PRELIMINARIES

.4

Straight Lines

ope of a Vertical Line

L denote the unique straight line that passes through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. If $x_{1}=x_{2}$, then L is a tical line, and the slope is undefined.

ope of a Nonvertical Line

$\left.x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two distinct points on a nonvertical L, then the slope m of L is given by

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

ope of a Nonvertical Line
१ > 0, the line slants upward from left to right.

ope of a Nonvertical Line
$1<0$, the line slants downward from left to right.

kample 1

etch the straight line that passes through the point 5) and has slope $-4 / 3$.
lution:
t the point $(2,5)$.
lope of $-4 / 3$ means that if icreases by $3, y$ decreases 4.
t the point $(5,1)$.
aw a line across the two noints

rample 2

d the slope m of the line that goes through the points , 1) and (5, 3).
ution:
oose $\left(x_{1}, y_{1}\right)$ to be $(-1,1)$ and $\left(x_{2}, y_{2}\right)$ to be $(5,3)$.
in $x_{1}=-1, y_{1}=1, x_{2}=5, y_{2}=3$, we find

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{5-(-1)}=\frac{2}{6}=\frac{1}{3}
$$

duations of Lines

L be a straight line parallel to the y-axis. Then L crosses x-axis at some point $(a, 0)$, with the x-coordinate given by a, where a is a real number. Any other point on L has the $\mathrm{n}(a, \bar{y})$, where \bar{y} is an appropriate number. The vertical
L can therefore be described as $x=a$

quations of Lines

L be a nonvertical line with a slope m.
$\left(x_{1}, y_{1}\right)$ be a fixed point lying on L and (x, y) be variable nt on L distinct from $\left(x_{1}, y_{1}\right)$.
ing the slope formula by letting $(x, y)=\left(x_{1}, y_{1}\right)$ we get

$$
m=\frac{y-y_{1}}{x-x_{1}}
$$

Itiplying both sides by $x-x_{2}$ we get

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

int-Slope Form

An equation of the line that has slope m and passes through point $\left(x_{1}, y_{1}\right)$ is given by

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

kample 5

d an equation of the line that passes through the point 3) and has slope 2.
lution:
e the point-slope form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

bstituting for point $(1,3)$ and slope $m=2$, we obtain

$$
y-3=2(x-1)
$$

rample 6

d an equation of the line that passes through the points , 2) and (4, -1).
lution:
e slope is given by

$$
m=\frac{y-y_{1}}{x-x_{1}}=\frac{-1-2}{4-(-3)}=-\frac{3}{7}
$$

bstituting in the point-slope form for point $(4,-1)$ and slope $=-3 / 7$, we obtain

$$
y+1=-\frac{3}{7}(x-4)
$$

rpendicular Lines

If L_{1} and L_{2} are two distinct nonvertical lines that have slopes m_{1} and m_{2}, respectively, then L_{1} is perpendicular to L_{2} (written $L_{1} \perp L_{2}$) if and only if

$$
m_{1}=-\frac{1}{m_{2}}
$$

rample 7

d the equation of the line L_{1} that passes through the nt $(3,1)$ and is perpendicular to the line L_{2} described by

$$
y-3=2(x-1)
$$

lution:
is described in point-slope form, so its slope is $m_{2}=2$.
ce the lines are perpendicular, the slope of L_{1} must be

$$
m_{1}=-1 / 2
$$

rample 7 - Solution

ing the point-slope form of the equation for L_{1} we obtain

$$
\begin{aligned}
y-1 & =-\frac{1}{2}(x-3) \\
2 y-2 & =-x+3 \\
x+2 y-5 & =0
\end{aligned}
$$

ossing the Axis

traight line L that is neither horizontal nor vertical cuts the xis and the y-axis at, say, points $(a, 0)$ and $(0, b)$, pectively.
e numbers a and b are called the x-intercept and itercept, respectively, of L.

ope Intercept Form

An equation of the line that has slope m and intersects the y-axis at the point $(0, b)$ is given by

$$
y=m x+b
$$

kample 8

d the equation of the line that has slope 3 and itercept of -4 .
lution:
substitute $m=3$ and $b=-4$ into $y=m x+b$, and get

$$
y=3 x-4
$$

kample 9

termine the slope and y-intercept of the line whose uation is $3 x-4 y=8$.
lution:
write the given equation in the slope-intercept form. Thus,

$$
\begin{aligned}
3 x-4 y & =8 \\
-4 y & =8-3 x \\
y & =\frac{3}{4} x-2
\end{aligned}
$$

$$
\text { mnaring to } v=m v+h \text { wo find that } m-3 / \text { and } h=\text { ? }
$$

plied Example 11

art object purchased for $\$ 50,000$ is expected to preciate in value at a constant rate of $\$ 5000$ per year for next 5 years. Write an equation predicting the value of art object for any given year. What will be its value 3 ars after the purchase?

plied Example 11 - Solution

$x=$ time (in years) since the object was purchased $y=$ value of object (in dollars)
en, $y=50,000$ when $x=0$, so the y-intercept is 50,000.
ery year the value rises by 5000 , so the slope is $m=5000$.
us, the equation must be $y=5000 x+50,000$.
er 3 years the value of the object will be $\$ 65,000$:

eneral Form of an Linear Equation

The equation

$$
A x+B y+C=0
$$

where A, B, and C are constants and A and B are not both zero, is called the general form of a linear equation in the variables x and y.
eorem 1

An equation of a straight line is a linear equation; conversely, every linear equation represents a straight line.

kample 12

etch the straight line represented by the equation

$$
3 x-4 y-12=0
$$

lution:
ce every straight line is uniquely determined by two tinct points, we need find only two such points through ich the line passes in order to sketch it.
convenience, let's compute the x - and y-intercepts:
Setting $y=0$, we find $x=4$; so the x-intercept is 4 .
Setting $x=0$, we find $y=-3$; so the y-intercept is -3 .

rample 12 - Solution

aph the line going through the points $(4,0)$ and $(0,-3)$.

