FUNCTIONS, LIMITS, AND THE DERIVATIVE

Copyright © Cengage Learning. All rights reserved.

2.1 Functions and Their Graphs

Functions

Function: A function is a rule that assigns to each element in a set A one and only one element in a set B.

The set A is called the domain of the function.

It is customary to denote a function by a letter of the alphabet, such as the letter f.

Functions

The element in B that f associates with x is written $f(x)$ and is called the value of f at x.

The set of all the possible values of $f(x)$ resulting from all the possible values of x in its domain, is called the range of $f(x)$.

The output $f(x)$ associated with an input x is unique:
Each x must correspond to one and only one value of $f(x)$.

Example 1(a)

Let the function f be defined by the rule

$$
f(x)=2 x^{2}-x+1
$$

Find: f(1)

Solution:

$$
\begin{aligned}
f(1) & =2(1)^{2}-(1)+1 \\
& =2-1+1=2
\end{aligned}
$$

Example 1(b)

Let the function f be defined by the rule

$$
f(x)=2 x^{2}-x+1
$$

Find: $f(-2)$

Solution:

$$
\begin{aligned}
f(-2) & =2(-2)^{2}-(-2)+1 \\
& =8+2+1=11
\end{aligned}
$$

Example 1(c)

Let the function f be defined by the rule

$$
f(x)=2 x^{2}-x+1
$$

Find: f(a)
Solution:

$$
\begin{aligned}
f(a) & =2(a)^{2}-(a)+1 \\
& =2 a^{2}-a+1
\end{aligned}
$$

Example 1(d)

Let the function f be defined by the rule

$$
f(x)=2 x^{2}-x+1
$$

Find: $f(a+h)$
Solution:

$$
\begin{aligned}
f(a+h) & =2(a+h)^{2}-(a+h)+1 \\
& =2 a^{2}+4 a h+2 h^{2}-a-h+1
\end{aligned}
$$

Applied Example 2

ThermoMaster manufactures an indoor-outdoor thermometer at its Mexican subsidiary. Management estimates that the profit (in dollars) realizable by ThermoMaster in the manufacture and sale of x thermometers per week is

$$
P(x)=-0.001 x^{2}+8 x-5000
$$

Find ThermoMaster's weekly profit if its level of production is:
a. 1000 thermometers per week.
b. 2000 thermometers per week.

Applied Example 2 - Solution

We have

$$
P(x)=-0.001 x^{2}+8 x-5000
$$

a. The weekly profit by producing 1000 thermometers is

$$
P(1000)=-0.001(1000)^{2}+8(1000)-5000=2000=
$$

or $\$ 2,000$.
b. The weekly profit by producing 2000 thermometers is

$$
P(2000)=-0.001(2000)^{2}+8(2000)-5000=7000=
$$

or \$7,000.

Determining the Domain of a Function

Suppose we are given the function $y=f(x)$. Then, the variable x is called the independent variable. The variable y, whose value depends on x, is called the dependent variable.

To determine the domain of a function, we need to find what restrictions, if any, are to be placed on the independent variable x.

In many practical problems, the domain of a function is dictated by the nature of the problem.

Applied Example 3 - Packaging

An open box is to be made from a rectangular piece of cardboard 16 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps.

Applied Example 3 - Packaging

An open box is to be made from a rectangular piece of cardboard 16 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps.

The dimensions of the resulting box are:
a. Find the expression that gives the volume V of the box as a function of x.
b. What is the domain of the function?

Applied Example 3(a) - Solution

The volume of the box is given by multiplying its dimensions (length • width • height), so:

$$
\begin{aligned}
V=f(x) & =(16-2 x) \cdot(10-2 x) \cdot x \\
& =\left(160-52 x+4 x^{2}\right) x \\
& =4 x^{3}-52 x^{2}+160 x
\end{aligned}
$$

Applied Example 3(b) - Solution

Since the length of each side of the box must be greater than or equal to zero, we see that

$$
16-2 x \geq 0 \quad 10-2 x \geq 0 \quad x \geq 0
$$

must be satisfied simultaneously.
Simplified:

$$
x \leq 8 \quad x \leq 5 \quad x \geq 0
$$

All three are satisfied simultaneously provided that:

$$
0 \leq x \leq 5
$$

Thus, the domain of the function f is the interval $[0,5]$.

Example 4(a)

Find the domain of the function:

$$
f(x)=\sqrt{x-1}
$$

Solution:
Since the square root of a negative number is undefined, it is necessary that $x-1 \geq 0$.

Thus the domain of the function is $[1, \infty)$.

Example 4(b)

Find the domain of the function:

$$
f(x)=\frac{1}{x^{2}-4}
$$

Solution:
Our only constraint is that you cannot divide by zero, so

$$
x^{2}-4 \neq 0
$$

Which means that

$$
x^{2}-4=(x+2)(x-2) \neq 0
$$

Or more specifically $x \neq-2$ and $x \neq 2$.
Thus the domain of f consists of the intervals $(-\infty,-2)$, $(-2,2),(2, \infty)$.

Example 4(c)

Find the domain of the function:

$$
f(x)=x^{2}+3
$$

Solution:
Here, any real number satisfies the equation, so the domain of f is the set of all real numbers.

Graphs of Functions

If f is a function with domain A, then corresponding to each real number x in A there is precisely one real number $f(x)$.

Thus, a function f with domain A can also be defined as the set of all ordered pairs $(x, f(x))$ where x belongs to A.

The graph of a function f is the set of all points (x, y) in the $x y$-plane such that x is the domain of f and $y=f(x)$.

Example 5

The graph of a function f is shown below:

Example 5

a. What is the value of $f(2)$?

Solution:

Example 5

b. What is the value of $f(5)$?

Solution:

Example 5

c. What is the domain of $f(x)$?

Solution:

Example 5

d. What is the range of $f(x)$?

Solution:

Example 6 - Sketching a Graph

Sketch the graph of the function defined by the equation

$$
y=x^{2}+1
$$

Solution:
The domain of the function is the set of all real numbers.
Assign several values to the variable x and compute the corresponding values for y :

x	y
-3	10
-2	5
-1	2
0	1
1	2
2	5
3	10

Example 6 - Solution

Then plot these values in a graph:

Example 6 - Solution

And finally, connect the dots:

Example 7 - Sketching a Graph

Sketch the graph of the function defined by the equation

$$
f(x)=\left\{\begin{array}{lll}
-x & \text { if } & x<0 \\
\sqrt{x} & \text { if } & x \geq 0
\end{array}\right.
$$

Solution:
The function f is defined in a piecewise fashion on the set of all real numbers.

In the subdomain $(-\infty, 0)$, the rule for f is given by

$$
f(x)=-x
$$

In the subdomain $[0, \infty)$, the rule for f is given by

$$
f(x)=\sqrt{x}
$$

Example 7 - Solution

Substituting negative values for x into $f(x)=-x$, while substituting zero and positive values into $f(x)=\sqrt{x}$ we get:

x	y
-3	3
-2	2
-1	1
0	0
1	1
2	1.41
3	1.73

Example 7 - Solution

Plotting these data and graphing we get:

