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Introduction to Calculus

Historically, the development of calculus by Isaac Newton
and Gottfried W. Leibniz resulted from the investigation of the
following problems:

1. Finding the tangent line to a curve at a given point on the
curve:

Vv




Introduction to Calculus

2. Finding the area of planar region bounded by an arbitrary
curve.




Introduction to Calculus

The study of the tangent-line problem led to the creation of
differential calculus, which relies on the concept of the
derivative of a function.

The study of the area problem led to the creation of integral
calculus, which relies on the concept of the anti-derivative, or
integral, of a function.




Example — A Speeding Maglev

From data obtained in a test run conducted on a prototype of
maglev, which moves along a straight monorail track,
engineers have determined that the position of the maglev
(in feet) from the origin at time t is given by

s = f(t) = 4t2 (0 <t<30)
Where f is called the position function of the maglev.

The position of the maglev attimet=0,1, 2,3, ..., 10 s
f0O)=0 f(1)=4 f(2)=16 {(3)=36... f(10) =400

But what if we want to find the velocity of the maglev at any
given point in time?




Example — A Speeding Maglev

Say we want to find the velocity of the maglev att = 2.

We may compute the average velocity of the maglev over an
iInterval of time, such as [2, 4] as follows:

Distance covered f(4)— f(2)
Timeelapsed ~  4-2
4(4°)-4(2°)
D
64 —-16
g
=24

or 24 feet/second.




Example — A Speeding Maglev

This is not the velocity of the maglev at exactly t = 2, but it is
a useful approximation.

We can find a better approximation by choosing a smaller
Interval to compute the speed, say [2, 3].

More generally, lett > 2. Then, the average velocity of the
maglev over the time interval [2, t] is given by

Distance covered  f(t)— f(2)
Time elapsed t-2




Example — A Speeding Maglev

_AtY)-4(2%)
0

At -4)
t—2

A(t* - 4)
=

Average velocity =

By choosing the values of t closer and closer to 2, we obtain
average velocities of the maglev over smaller and smaller
time intervals.




Example — A Speeding Maglev

The smaller the time interval, the closer the average velocity
becomes to the instantaneous velocity of the train att = 2, as
the table below demonstrates:

t 25 21 201 2001 2.0001
Average Velocity 18 16.4 16.04 16.004 16.0004

The closer t gets to 2, the closer the average velocity gets to
16 feet/second.

Thus, the instantaneous velocity att = 2 seems to be
16 feet/second.




Intuitive Definition of a Limit

Consider the function g, which gives the average velocity of
the maglev:

A(t* —4)
t-2

g(t) =

Suppose we want to find the value that g(t) approaches
as t approaches 2.

« We take values of t approaching 2 from the right (as we did
before), and we find that g(t) approaches 16:

t 25 21 201 2001 2.0001
g(t) 18 16.4 16.04 16.004 16.0004




Intuitive Definition of a Limit

« Similarly, we take values of t approaching 2 from the left,
and we find that g(t) also approaches 16:

t 15 19 199 1999  1.9999
g(t) 14 156 1596 15.996 15.9996




Intuitive Definition of a Limit

We have found that as t approaches 2 from either side, g(t)
approaches 16.

In this situation, we say that the limit of g(t) as t approaches 2
Is 10.

This Is written as

(t° —4) o

: A
i o® =1 =

Observe that t = 2 is not in the domain of g(t) .

But this does not matter, since t = 2 does not play any role in

computing this limit.
13




Limit of a Function

/

\_

f has a L as x approaches a, written

lim f(x)=L

X—a

If the value of f(x) can be made as close to the number L
as we please by taking x values sufficiently close to (but
) a.




Example 1

Let f(x) = x3. Evaluate lim f(x).
X—2

Solution:

You can see in the graph that f(x) can be as close to 8 as we
please by taking x sufficiently close to 2.

f(x) = x3
Therefore,

lim x°*=8
X—>2




Example 2

If x =1

. Evaluate lim g(x).
ifx=1 *ﬁlg()

2
et g(x):{)l(+

Solution:

You can see in the graph that g(x) can be as close to 3 as we
please by taking x sufficiently close to 1.

g(x)
Therefore,

lim g(x) =3




Example 3(b)

1 :
Let f(x) =7 Evaluate lim £ (x).

Solution:

The graph shows us that as
X approaches 0 from either

side, f(x) increases without
pbound and thus does not
approach any specific real
number.

Thus, the limit of f(x) does
not exist as x approaches 0.




Theorem 1: Properties of Limits

4 : - _
Suppose !(er;l f(x)=L and )I(l_r)lg g(x)=M
Then,

Lo lim [f(0)] = [Iim f(x)]r =1 r, a real number

X—a X—a

2. lim cf (x)=clim f(x)=cL c, a real number
X—a X—a

3. lIm [f(x)xg()]=lim f(x)£lim g(x)=L£M

X—a X—a X—a

4. lim [f(x)g(x)]:[!(i_r)g f(x)}[lim g(x)J: LM

X—a X—a

f(x)_lim f(X)_ L

5. lIm — X2a — Provided that M # 0
x=a g(x) limg(x) M

X—a /




Example 4

Use theorem 1 to evaluate the following limits:

3
a. im x*=[fimy | -2 ¢

lim 552 _5[ lim x| = 5(4)%2
im 57 =5 lim x| =5(4)*2 = 40

4
: A . T
_ IXI_rH (5x" - 2) _5[!(|_rﬂ x} !(I_rH 2 =5(1)*-2=3




Example 4

3
1 3 2 il 1 1 2 — 3 2 il
: !(m 2XN X+ 7 —Z[LI_% x} )I(I_)Wé X“+7 =23)°\(3)°+7 =216

1 2
2X2+1 i )I(I_r)nz (2X +1) _2(2)2+1 _9_3
M im (x+0) — 2.0 "3
X—2




Indeterminate Forms

2 —
Let’s consider IIm <)

X2 x-=2
maglev example by looking at values for x near x = 2.

which we evaluated earlier for the

If we attempt to evaluate this expression by applying
Property 5 of limits, we get

40¢—4) M- o

lIm :
X—>2 X —2 limx -2 0
X—>2

In this case we say that the limit of the quotient f(x)/g(x) as x
approaches 2 has the indeterminate form 0/0.

This expression does not provide us with a solution to our
problem.




Strategy for Evaluating Indeterminate Forms

1. Replace the given function with an appropriate
one that takes on the same values as the
original function everywhere except at x = a.

2. Evaluate the limit of this function as x
approaches a.




Example 5

2
Evaluate ”m4(x =4,
X=2 xX-=2

Solution:
As we’ve seen, here we have an indeterminate form 0/0.

We can rewrite

4(x* —4) _A(x=2)(x+2)
=) X—2

=4(x+2)

Thus, we can say that

. A(XP—4) |
!(l_)rg .- _!(I_)rrg4(x+2):l6

Note that 16 is the same value we obtained for the maglev
example through approximation.




Example 5 — Solution

cont’d

Notice in the graphs below that the two functions yield the
same graphs, except for the value x = 2:

f(x)= ’ A g(X) = 4(x+2)




Example 6
JlT 1

Evaluate Ilm

Solution:
As we’ve seen, here we have an indeterminate form 0/0.

We can rewrite (with the constraint that h # 0):

Vv1+h-1 \/1+ -1 \/1+ 11 h 1
h h \/1+h+1 h(\/1+ +1) \/l+h+1

Thus, we can say that




Limits at Infinity

There are occasions when we want to know whether f(x)
approaches a unigue number as x increases without bound.

In the graph below, as x increases without bound, f(x)
approaches the number 400. We call the line y = 400
a horizontal asymptote.

In this case, we can say

that _
l[im f (x) =400

X—>00
and we call this a limit
of a function at infinity.

10 20 30 40 50 60




Example

2X°

Consider the function f(x) = >
1+ X

Determine what happens to f(x) as x gets larger and larger.

Solution:
We can pick a sequence of values of x and substitute them in
the function to obtain the following values:

x 1 2 5 10 100 1000
fx) 1 16 192 198 1.9998 1.999998

As x gets larger and larger, f(x) gets closer and closer to 2.

Thus, we can say that ;
. 2X

lim ——=2

X—>0] 4+ X




Limit of a Function at Infinity

* The function f has the L as x increases without
bound (as x approaches infinity), written
lim f(x)=L

X—>0

If f(x) can be made arbitrarily close to L by taking x
large enough.

- Similarly, the function f has the M as X
decreases without bound (as x approaches negative
infinity), written .

lim f(x)=M

X—>—00

if f(x) can be made arbitrarily close to M by taking x
large enough in absolute value.




Example 7(a)

-1 1fx<0
1 1ifx>0

Letf(x):{:

Evaluate lIm f(x) and lim f(x)

X—>—00

Solution:
Graphing f(x) reveals that

lim f (x) =1

X—>00

lim f(x)=-1

X—>—00




Example 7(b)

Let g(x) =i2
X

Evaluate )I(mg(x) andXILrpoog(x)

Solution:
Graphing g(x) reveals that

limg(x)=0

X—>00

lim g(x) =0

X—>—00




Theorem 2: Properties of Limits

All properties of limits listed in Theorem 1 are valid when a is
replaced by o« or —oo.

In addition, we have the following properties for limits to
Infinity:

[

Foralln>0, lim i=O and

X—>00 X”

provided that % Is defined.




Example 8

2
Evaluate |jm X —X+3
x> 2x° 41

Solution:

The limits of both the numerator and denominator do not
exist as x approaches infinity, so property 5 is not applicable.

We can find the solution instead by dividing numerator and
denominator by x3:
1

(X 3 —Toaat ol
i X XX e xS
x> (2x3+1) /x> xow 1 2+0 2




Example 9

2
Evaluate |im SX *t8x-4
X—>o 2X° +4X -5

Solution:
Again, we see that property 5 does not apply.

So we divide numerator and denominator by x?:

- ~=|im
S0 (2X° + 4X —3) / XSS

4
oo (B +8x—4)/ x> . °" 5 x2S
5

ool

X2




Example 10

3 2
Evaluate lim 2X2 —
X0  X°+2X+4

Solution:
Again, we see that property 5 does not apply.

But dividing numerator and denominator by x? does not help

In this case:

2X—3 T

2 -3+ DG s
HUB . =l|m SH
x>0 (X°+2X+4)/Xx e 2
X X

In other words, the limit does not exist. We indicate this by
writing o ]
lim 2% -3X"+1

> = o0
X—>o X+ 2X+4




