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Introduction to Calculus
Historically, the development of calculus by Isaac Newton
and Gottfried W. Leibniz resulted from the investigation of the 
following problems:

1. Finding the tangent line to a curve at a given point on the 
curve:
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Introduction to Calculus
2. Finding the area of planar region bounded by an arbitrary 

curve.
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Introduction to Calculus
The study of the tangent-line problem led to the creation of 
differential calculus, which relies on the concept of the 
derivative of a function.

The study of the area problem led to the creation of integral 
calculus, which relies on the concept of the anti-derivative, or 
integral, of a function.
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Example – A Speeding Maglev
From data obtained in a test run conducted on a prototype of 
maglev, which moves along a straight monorail track, 
engineers have determined that the position of the maglev 
(in feet) from the origin at time t is given by

s = f(t) = 4t2 (0 ≤ t ≤ 30)
Where f is called the position function of the maglev.

The position of the maglev at time t = 0, 1, 2, 3, … , 10 is
f(0) = 0     f(1) = 4     f(2) = 16      f(3) = 36 …  f(10) = 400

But what if we want to find the velocity of the maglev at any 
given point in time?
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Example – A Speeding Maglev
Say we want to find the velocity of the maglev at t = 2.

We may compute the average velocity of the maglev over an 
interval of time, such as [2, 4] as follows:

or 24 feet/second.

Distance covered (4) (2)
Time elapsed 4 2





f fDistance covered (4) (2)

Time elapsed 4 2





f f

2 24(4 ) 4(2 )
2



2 24(4 ) 4(2 )

2




64 16
2



64 16

2




24 24
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Example – A Speeding Maglev
This is not the velocity of the maglev at exactly t = 2, but it is 
a useful approximation.

We can find a better approximation by choosing a smaller 
interval to compute the speed, say [2, 3].

More generally, let t > 2. Then, the average velocity of the 
maglev over the time interval [2, t] is given by

Distance covered ( ) (2)
Time elapsed 2





f t f

t
Distance covered ( ) (2)

Time elapsed 2





f t f
t
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Example – A Speeding Maglev

By choosing the values of t closer and closer to 2, we obtain 
average velocities of the maglev over smaller and smaller 
time intervals.

24( 4)
2





t
t

24( 4)
2





t
t

2 24( ) 4(2 )
2





t

t

2 24( ) 4(2 )
2





t

t

24( 4)Average velocity
2

t
t





24( 4)Average velocity
2

t
t




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Example – A Speeding Maglev
The smaller the time interval, the closer the average velocity
becomes to the instantaneous velocity of the train at t = 2, as 
the table below demonstrates:

The closer t gets to 2, the closer the average velocity gets to 
16 feet/second. 

Thus, the instantaneous velocity at t = 2 seems to be              
16 feet/second.

t 2.5 2.1 2.01 2.001 2.0001
Average Velocity 18 16.4 16.04 16.004 16.0004
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Intuitive Definition of a Limit
Consider the function g, which gives the average velocity of 
the maglev:

Suppose we want to find the value that g(t) approaches
as t approaches 2.

• We take values of t approaching 2 from the right (as we did 
before), and we find that g(t) approaches 16:

24( 4)( )
2

tg t
t





24( 4)( )
2

tg t
t





t 2.5 2.1 2.01 2.001 2.0001
g(t) 18 16.4 16.04 16.004 16.0004
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Intuitive Definition of a Limit
• Similarly, we take values of t approaching 2 from the left, 

and we find that g(t) also approaches 16:

t 1.5 1.9 1.99 1.999 1.9999
g(t) 14 15.6 15.96 15.996 15.9996
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Intuitive Definition of a Limit
We have found that as t approaches 2 from either side, g(t)
approaches 16.

In this situation, we say that the limit of g(t) as t approaches 2
is 16.

This is written as

Observe that t = 2 is not in the domain of g(t) .

But this does not matter, since t = 2 does not play any role in 
computing this limit.

2

2 2
4( 4)( )  16

2
lim lim
t t

tg t
t 


 



2

2 2
4( 4)( )  16

2
lim lim
t t

tg t
t 


 


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Limit of a Function

The function f has a limit L as x approaches a, written

If the value of f(x) can be made as close to the number L
as we please by taking x values sufficiently close to (but 
not equal to) a.

 ( )lim
x a

f x L


 ( )lim
x a

f x L



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Example 1
Let f(x) = x3. Evaluate 

Solution:
You can see in the graph that f(x) can be as close to 8 as we 
please by taking x sufficiently close to 2.

Therefore, 

2
( )lim  .

x
f x

2
( )lim  .

x
f x



3

2
8lim  

x
x


3

2
8lim  

x
x




–2 –1 1 2 3

8

6

4

2

–2

x

y f(x) = x3
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Example 2

1
( )lim  .

x
g x

1
( )lim  .

x
g x



2 1
( )

1 1
if 

   
     if 

x x
g x

x
 

  

2 1
( )

1 1
if 

   
     if 

x x
g x

x
 

  
Let                                . Evaluate 

Solution:
You can see in the graph that g(x) can be as close to 3 as we 
please by taking x sufficiently close to 1.

Therefore, 

1
( ) 3lim  

x
g x




1
( ) 3lim  

x
g x




5

3

1

–2 –1 1 2 3
x

y g(x)
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Example 3(b)

0
( )lim  .

x
f x

0
( )lim  .

x
f x

2

1( )f x
x

 2

1( )f x
x

Let               . Evaluate

Solution:
The graph shows us that as 
x approaches 0 from either 
side, f(x) increases without 
bound and thus does not 
approach any specific real 
number.

Thus, the limit of f(x) does 
not exist as x approaches 0.

x
–2 –1 1 2

5

y

2

1( )f x
x

 2

1( )f x
x


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Suppose and
Then,

r, a real number

c, a real number

Provided that M ≠ 0

Suppose and
Then,

r, a real number

c, a real number

Provided that M ≠ 0

Theorem 1: Properties of Limits

( )lim  
x a

g x M


( )lim  
x a

g x M


 ( )lim
x a

f x L


 ( )lim
x a

f x L




   ( )  ( )1. lim lim
 

   
rr r

x a x a
f x f x L   ( )  ( )1. lim lim

 
   

rr r

x a x a
f x f x L

   ( )  ( )2. lim lim
 

 
x a x a

cf x c f x cL   ( )  ( )2. lim lim
 

 
x a x a

cf x c f x cL

    ( ) (3. )  ( )  ( )lim lim lim
  

    
x a x a x a

f x g x f x g x L M    ( ) (3. )  ( )  ( )lim lim lim
  

    
x a x a x a

f x g x f x g x L M

    ( ) ( )  ( )4. ( )lim lim lim
  

       x a x a x a
f x g x f x g x LM    ( ) ( )  ( )4. ( )lim lim lim

  
       x a x a x a

f x g x f x g x LM

 (
5.

)( )   
( )  ( )

lim
lim

lim





 x a
x a

x a

f xf x L
g x g x M

 (
5.

)( )   
( )  ( )

lim
lim

lim





 x a
x a

x a

f xf x L
g x g x M
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Example 4
Use theorem 1 to evaluate the following limits: 

a.

b.

c.

3

2
lim


    x
x

3

2
lim


    x
x3

2
lim
x

x


3

2
lim
x

x


3/2

4
5 lim


    x

x 
3/2

4
5 lim


    x

x 3/2

4
5lim

x
x


3/2

4
5lim

x
x



4

1 1
5 2lim lim

 
    x x

x  
4

1 1
5 2lim lim

 
    x x

x  4

1
(5 2)lim

x
x


4

1
(5 2)lim

x
x




32 8 32 8 

3/25(4) 40 3/25(4) 40 

45(1) 2 3  45(1) 2 3  
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d.

e.

3
2

3 3
2 7lim lim

 
    x x

x x  
3

2

3 3
2 7lim lim

 
    x x

x x  3 2

3
2 7lim

x
x x


3 2

3
2 7lim

x
x x




2

2

2

(2 1)

( 1)

lim
lim








x

x

x

x

 

 

2

2

2

(2 1)

( 1)

lim
lim








x

x

x

x

 

 

2

2
2 1 

1
lim
x

x
x




2

2
2 1 

1
lim
x

x
x




Example 4 cont’d

3 22(3) (3) 7 3 22(3) (3) 7  216 216

22(2) 1
2 1






22(2) 1
2 1





9 3
3

 
9 3
3

 
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Indeterminate Forms
Let’s consider                     which we evaluated earlier for the

maglev example by looking at values for x near x = 2.

If we attempt to evaluate this expression by applying 
Property 5 of limits, we get

In this case we say that the limit of the quotient f(x)/g(x) as x
approaches 2 has the indeterminate form 0/0.

This expression does not provide us with a solution to our 
problem.

2

2
4( 4)

2
lim
x

x
x




2

2
4( 4)

2
lim
x

x
x




22
2

2
2

4( 4) 4( 4) 0
2 2 0

lim
lim

lim
x

x
x

xx
x x







 

 

22
2

2
2

4( 4) 4( 4) 0
2 2 0

lim
lim

lim
x

x
x

xx
x x







 

 



22

Strategy for Evaluating Indeterminate Forms

1. Replace the given function with an appropriate 
one that takes on the same values as the      
original function everywhere except at x = a.

2. Evaluate the limit of this function as x
approaches a.
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Example 5
Evaluate

Solution:
As we’ve seen, here we have an indeterminate form 0/0.

We can rewrite 

Thus, we can say that

Note that 16 is the same value we obtained for the maglev 
example through approximation.

2

2
4( 4)

2
lim
x

x
x




2

2
4( 4)

2
lim
x

x
x




24( 4) 4( 2)( 2)
2 2
  


 

x x x
x x

24( 4) 4( 2)( 2)
2 2
  


 

x x x
x x

2

2 2
4( 4) 4( 2)

2
lim lim
 


 

x x
x x
x

2

2 2
4( 4) 4( 2)

2
lim lim
 


 

x x
x x
x

4( 2) x4( 2) x

1616

x ≠ 2
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Example 5 – Solution
Notice in the graphs below that the two functions yield the 
same graphs, except for the value x = 2:

x
–3 –2 –1 1 2 3

( ) 4( 2)g x x 
24( 4)( )

2
xf x
x




20

16

12

8

4

x

y
20

16

12

8

4

y

–3 –2 –1 1 2 3

cont’d
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Example 6
Evaluate

Solution:
As we’ve seen, here we have an indeterminate form 0/0.

We can rewrite (with the constraint that h ≠ 0):

Thus, we can say that

0
1 1lim

h
h

h

 
0

1 1lim
h

h
h

 

1 1
1 1

1 1 1 1   
 

 
 

h h
h h

h
h

1 1
1 1

1 1 1 1   
 

 
 

h h
h h

h
h

0 0
1 1 1

1 1
lim lim
 

 


 h h
h

h h0 0
1 1 1

1 1
lim lim
 

 


 h h
h

h h
1 1

21 1
 


1 1

21 1
 



1
( 1 1) 1 1

 
   
h

h h h
1

( 1 1) 1 1
 

   
h

h h h
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Limits at Infinity
There are occasions when we want to know whether f(x)
approaches a unique number as x increases without bound.

In the graph below, as x increases without bound, f(x)
approaches the number 400. We call the line y = 400
a horizontal asymptote.

In this case, we can say 
that

and we call this a limit
of a function at infinity.

( ) 400lim
x

f x


( ) 400lim
x

f x




( )f x( )f x
400

300

200

100

x

y

10 20 30 40 50 60
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Example
Consider the function

Determine what happens to f(x) as x gets larger and larger.

Solution:
We can pick a sequence of values of x and substitute them in 
the function to obtain the following values:

As x gets larger and larger, f(x) gets closer and closer to 2.
Thus, we can say that 2

2

2 2
1

lim
x

x
x




2

2

2 2
1

lim
x

x
x




2

2

2( )
1

xf x
x




2

2

2( )
1

xf x
x




x 1 2 5 10 100 1000
f(x) 1 1.6 1.92 1.98 1.9998 1.999998
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Limit of a Function at Infinity
• The function f has the limit L as x increases without 

bound (as x approaches infinity), written

if f(x) can be made arbitrarily close to L by taking x
large enough.

• Similarly, the function f has the limit M as x
decreases without bound (as x approaches negative 
infinity), written

if f(x) can be made arbitrarily close to M by taking x
large enough in absolute value.

( )lim
x

f x L


( )lim
x

f x L




( )lim
x

f x M


( )lim
x

f x M



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Example 7(a)

Let 

Evaluate                and

Solution:
Graphing f(x) reveals that

( )lim
x

f x


( )lim
x

f x


1    if 0
( )

1    if 0
x

f x
x

 
  

1    if 0
( )

1    if 0
x

f x
x

 
  

( ) 1lim
x

f x


( ) 1lim
x

f x




( ) 1lim
x

f x


 ( ) 1lim
x

f x


 

( )f x( )f x
1

–1 

x

y

–3 3
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Example 7(b)
Let 

Evaluate               and

Solution:
Graphing g(x) reveals that

( ) 0lim
x

g x


( ) 0lim
x

g x




( ) 0lim
x

g x


( ) 0lim
x

g x




x

2

1( )g x
x

 2

1( )g x
x



y

–3 –2 –1 1 2 3

( )lim
x

g x


( )lim
x

g x


( )lim
x

g x


( )lim
x

g x


2

1( )g x
x

 2

1( )g x
x


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Theorem 2: Properties of Limits

For all n > 0, and

provided  that       is defined.

1 0lim nx x


1 0lim nx x


1 0lim nx x


1 0lim nx x


1
nx

1
nx

All properties of limits listed in Theorem 1 are valid when a is 
replaced by  or –.

In addition, we have the following properties for limits to 
infinity:
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Example 8
Evaluate 

Solution:
The limits of both the numerator and denominator do not 
exist as x approaches infinity, so property 5 is not applicable.

We can find the solution instead by dividing numerator and
denominator by x3:

2

3

3 
2 1

lim
x

x x
x

 


2

3

3 
2 1

lim
x

x x
x

 


2 3 2 3

3 3

3

1 1 3
( 3) /

1(2 1) / 2
lim lim
 

  


 
x x

x x x x x x
x x

x

2 3 2 3

3 3

3

1 1 3
( 3) /

1(2 1) / 2
lim lim
 

  


 
x x

x x x x x x
x x

x

0 0 0 0 0
2 0 2
 

  


0 0 0 0 0
2 0 2
 

  

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Example 9
Evaluate 

Solution:
Again, we see that property 5 does not apply.

So we divide numerator and denominator by x2:

2 2 2

2 2

2

8 43(3 8 4) /
4 5(2 4 5) / 2

lim lim
 

  


   
x x

x x x x x
x x x

x x

2 2 2

2 2

2

8 43(3 8 4) /
4 5(2 4 5) / 2

lim lim
 

  


   
x x

x x x x x
x x x

x x

2

2

3 8 4 
2 4 5

lim
x

x x
x x

 
 

2

2

3 8 4 
2 4 5

lim
x

x x
x x

 
 

3 0 0 3
2 0 0 2
 

 
 

3 0 0 3
2 0 0 2
 

 
 
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Example 10
Evaluate 

Solution:
Again, we see that property 5 does not apply.
But dividing numerator and denominator by x2 does not help 
in this case:

In other words, the limit does not exist. We indicate this by 
writing

3 2

2

2 3 1 
2 4

lim
x

x x
x x

 
 

3 2

2

2 3 1 
2 4

lim
x

x x
x x

 
 

3 2 2 2

2 2

2

12 3(2 3 1) /
2 4( 2 4) / 1

lim lim
x x

xx x x x
x x x

x x
 

  


   

3 2 2 2

2 2

2

12 3(2 3 1) /
2 4( 2 4) / 1

lim lim
x x

xx x x x
x x x

x x
 

  


   

3 2

2

2 3 1 
2 4

lim
x

x x
x x

 
 

 

3 2

2

2 3 1 
2 4

lim
x

x x
x x

 
 

 


