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One-Sided Limits
Consider the function

Its graph shows that f does not
have a limit as x approaches zero, 
because approaching from each 
side results in different values.
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One-Sided Limits
If we restrict x to be greater than zero (to the right of zero), 
we see that f(x) approaches 1 as close to as we please as x
approaches 0. 

In this case we say that the right-hand 
limit of f as x approaches 0 is 1, written
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One-Sided Limits
Similarly, if we restrict x to be less than zero (to the left of 
zero), we see that f(x) approaches –1 as close to as we 
please as x approaches 0.

In this case we say that the left-hand 
limit of f as x approaches 0 is – 1, 
written
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• The function f has the right-hand limit L as x
approaches from the right, written

If the values of f(x) can be made as close to L as we 
please by taking x sufficiently close to (but not equal 
to) a and to the right of a.

• Similarly, the function f has the left-hand limit L as x
approaches from the left, written

If the values of f(x) can be made as close to L as we 
please by taking x sufficiently close to (but not equal 
to) a and to the left of a.
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Theorem 3: Properties of Limits

Let f be a function that is defined for all values of x close  
to x = a with the possible exception of a itself. Then
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The connection between one-side limits and the two-sided 
limit defined earlier is given by the following theorem.
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Example 1(a)
Show that exists by studying the one-sided
limits of f as x approaches 0: 

Solution:
For x > 0, we find

And for x ≤ 0, we find

Thus, 
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Show that does not exist.

Solution:
For x < 0, we find

And for x  0, we find

Thus,             does not exist.

Example 1(b)
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Continuous Functions
Loosely speaking, a function is continuous at a given point if 
its graph at that point has no holes, gaps, jumps, or breaks.

Consider, for example, the graph of f

This function is discontinuous at the following points: 
1. At x = a, f is not defined (x = a is not in the domain of f ).
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Continuous Functions
2. At x = b, f(b) is not equal to the limit of f(x) as x 

approaches b.

3. At x = c, the function does not have a limit, since the 
left-hand and right-hand limits are not equal.

4. At x = d, the limit of the function does not exist, resulting in 
a break in the graph.
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Continuity of a Function at a Number

• A function f is continuous at a number x = a if 
the following conditions are satisfied:

1. f(a) is defined.

2.

3.

• If f is not continuous at x = a, then f is said   
to be discontinuous at x = a.

• Also, f is continuous on an interval if f is  
continuous at every number in the interval.
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Example 2(a)
Find the values of x for which the function is continuous:

Solution:
The function f is continuous everywhere because the three 
conditions for continuity are satisfied for all values of x.
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Example 2(b)
Find the values of x for which the function is continuous:

Solution:
The function g is discontinuous at x = 2 because g is not 
defined at that number. It is continuous everywhere else. 
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Example 2(c)
Find the values of x for which the function is continuous:

Solution:
The function h is continuous everywhere except at x = 2
where it is discontinuous because
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Example 2(d)
Find the values of x for which the function is continuous:

Solution:
The function F is discontinuous at x = 0 because the limit of 
F fails to exist as x approaches 0. It is continuous 
everywhere else. 
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Example 2(e)
Find the values of x for which the function is continuous:

Solution:
The function G is discontinuous at x = 0 because the limit of 
G fails to exist as x approaches 0. It is continuous 
everywhere else. 

1 0
( )

1 0

  if  
  if

 

  

x
G x x

x

  
 

1 0
( )

1 0

  if  
  if

 

  

x
G x x

x

  
 

( )y G x ( )y G x

–1 

x

y



18

Properties of Continuous Functions

1. The constant function f(x) = c is continuous everywhere.

2. The identity function f(x) = x is continuous everywhere.

If f and g are continuous at x = a, then
3. [f(x)]n, where n is a real number, is continuous at                   

x = a whenever it is defined at that number.

4. f ± g is continuous at x = a.

5. fg is continuous at x = a.

6. f /g is continuous at g(a) ≠ 0.
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Properties of Continuous Functions

1. A polynomial function y = P(x) is continuous at every 
value of x.

2. A rational function R(x) = p(x)/q(x) is continuous at 
every value of x where q(x) ≠ 0.

Using these properties, we can obtain the following 
additional properties.
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Example 3(a)
Find the values of x for which the function is continuous.

Solution:
The function f is a polynomial function of degree 3, so f(x) is 
continuous for all values of x.
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Example 3(b)
Find the values of x for which the function is continuous.

Solution:
The function g is a rational function. 

Observe that the denominator of g is never equal to zero.

Therefore, we conclude that g(x) is continuous for all values 
of x.

10 2

2

8 4 1( )
1

x xg x
x
 






22

Example 3(c)
Find the values of x for which the function is continuous.

Solution:
The function h is a rational function.

In this case, however, the denominator of h is equal to zero
at x = 1 and x = 2, which we can see by factoring.

Therefore, we conclude that h(x) is continuous everywhere 
except at x = 1 and x = 2.
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Intermediate Value Theorem
Let’s look again at the maglev example.

The train cannot vanish at any instant of time and cannot 
skip portions of track and reappear elsewhere.
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Intermediate Value Theorem
Mathematically, recall that the position of the maglev is a 
function of time given by f(t) = 4t2 for 0  t  30:

Suppose the position of the maglev is s1 at some time t1 and 
its position is s2 at some time t2. Then, if s3 is any number 
between s1 and s2, there must be at least one t3 between t1
and t2 giving the time at which the maglev is at s3 (f(t3) = s3).
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Theorem 4: Intermediate Value Theorem

The Maglev example carries the gist of the intermediate 
value theorem:
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If f is a continuous function on a closed interval [a, b] and 
M is any number between f(a) and f(b), then there is at 
least one number c in [a, b] such that f(c) = M.
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Theorem 5: Existence of Zeros of a Continuous Function

A special case of this theorem is when a continuous 
function crosses the x axis.

If f is a continuous function on a closed interval [a, b], and  
if f(a) and f(b) have opposite signs, then there is at least 
one solution of the equation f(x) = 0 in the interval (a, b).
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Example 5
Let f(x) = x3 + x + 1. 

a. Show that f is continuous for all values of x. 

b. Compute f(–1) and f(1) and use the results to deduce that 
there must be at least one number x = c, where c lies in 
the interval (–1, 1) and f(c) = 0.
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Example 5 – Solution
a. The function f is a polynomial function of degree 3 and is   

therefore continuous everywhere.

b. f (–1) = (–1)3 + (–1) + 1 = –1  and f (1) = (1)3 + (1) + 1 = 3 

Since f (–1) and f (1) have opposite signs, Theorem 5 tells 
us that there must be at least one number x = c with   
–1 < c < 1 such that f(c) = 0.


