DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.

3.1

Basic Rules of Differentiation

Four Basic Rules

We've learned that to find the rule for the derivative f^{\prime} of a function f, we first find the difference quotient

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

But this method is tedious and time consuming, even for relatively simple functions.

This chapter we will develop rules that will simplify the process of finding the derivative of a function.

Rule 1: Derivative of a Constant

We will use the notation $\frac{d}{d x}[f(x)]$
To mean "the derivative of f with respect to x at x."

Rule 1: Derivative of a constant

$$
\frac{d}{d x}(c)=0
$$

The derivative of a constant function is equal to zero.

Rule 1: Derivative of a Constant

We can see geometrically why the derivative of a constant must be zero.

The graph of a constant function is a straight line parallel to the x axis.

Such a line has a slope that is constant with a value of zero. Thus, the derivative of a constant must be zero as well.

Rule 1: Derivative of a Constant

We can use the definition of the derivative to demonstrate this:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c-c}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
& =0
\end{aligned}
$$

Rule 2: The Power Rule

Rule 2: The Power Rule If n is any real number, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Rule 2: The Power Rule

Lets verify this rule for the special case of $n=2$.
If $f(x)=x^{2}$, then

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{2}\right)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

Example 2

If $f(x)=x$, then $f^{\prime}(x)=\frac{d}{d x}(x)=1 \cdot x^{1-1}=x^{0}=1$
If $f(x)=x^{8}$, then $f^{\prime}(x)=\frac{d}{d x}\left(x^{8}\right)=8 \cdot x^{8-1}=8 x^{7}$
If $f(x)=x^{5 / 2}$, then $f^{\prime}(x)=\frac{d}{d x}\left(x^{5 / 2}\right)=\frac{5}{2} \cdot x^{5 / 2-1}=\frac{5}{2} x^{3 / 2}$

Example 3(a)

Find the derivative of $f(x)=\sqrt{x}$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{1 / 2}\right) \\
& =\frac{1}{2} x^{1 / 2-1} \\
& =\frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Example 3(b)

Find the derivative of $f(x)=\frac{1}{\sqrt[3]{x}}$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{1}{\sqrt[3]{x}}\right)=\frac{d}{d x}\left(x^{-1 / 3}\right) \\
& =-\frac{1}{3} x^{-1 / 3-1} \\
& =-\frac{1}{3} x^{-4 / 3} \\
& =-\frac{1}{3 x^{4 / 3}}
\end{aligned}
$$

Rule 3: Derivative of a Constant Multiple Function

Rule 3: Derivative of a Constant Multiple Function If c is any constant real number, then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

Example 4(a)

Find the derivative of $f(x)=5 x^{3}$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(5 x^{3}\right) \\
& =5 \frac{d}{d x}\left(x^{3}\right) \\
& =5\left(3 x^{2}\right) \\
& =15 x^{2}
\end{aligned}
$$

Example 4(b)

Find the derivative of $f(x)=\frac{3}{\sqrt{x}}$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(3 x^{-1 / 2}\right) \\
& =3\left(-\frac{1}{2} x^{-3 / 2}\right) \\
& =-\frac{3}{2 x^{3 / 2}}
\end{aligned}
$$

Rule 4: The Sum Rule

Rule 4: The Sum Rule

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
$$

Example 5(a)

Find the derivative of $f(x)=4 x^{5}+3 x^{4}-8 x^{2}+x+3$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(4 x^{5}+3 x^{4}-8 x^{2}+x+3\right) \\
& =4 \frac{d}{d x}\left(x^{5}\right)+3 \frac{d}{d x}\left(x^{4}\right)-8 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(3) \\
& =4\left(5 x^{4}\right)+3\left(4 x^{3}\right)-8(2 x)+1+0 \\
& =20 x^{4}+12 x^{3}-16 x+1
\end{aligned}
$$

Example 5(b)

Find the derivative of $g(t)=\frac{t^{2}}{5}+\frac{5}{t^{3}}$
Solution:

$$
\begin{aligned}
g^{\prime}(t) & =\frac{d}{d t}\left(\frac{t^{2}}{5}+\frac{5}{t^{3}}\right) \\
& =\frac{d}{d t}\left(\frac{1}{5} t^{2}+5 t^{-3}\right) \\
& =\frac{1}{5} \cdot \frac{d}{d t}\left(t^{2}\right)+5 \frac{d}{d t}\left(t^{-3}\right) \\
& =\frac{2 t}{5}-\frac{15}{t^{4}}=\frac{2 t^{5}-75}{5 t^{4}}
\end{aligned}
$$

Applied Example 7 - Conservation of a Species

A group of marine biologists at the Neptune Institute of Oceanography recommended that a series of conservation measures be carried out over the next decade to save a certain species of whale from extinction. After implementing the conservation measure, the population of this species is expected to be

$$
N(t)=3 t^{3}+2 t^{2}-10 t+600 \quad(0 \leq t \leq 10)
$$

where $N(t)$ denotes the population at the end of year t. Find the rate of growth of the whale population when
$t=2$ and $t=6$. How large will the whale population be 8 years after implementing the conservation measures?

Applied Example 7 - Solution

The rate of growth of the whale population at any time t is given by

$$
N^{\prime}(t)=9 t^{2}+4 t-10
$$

In particular, for $t=2$, we have

$$
N^{\prime}(2)=9(2)^{2}+4(2)-10=34
$$

And for $t=6$, we have

$$
N^{\prime}(6)=9(6)^{2}+4(6)-10=338
$$

Thus, the whale population's rate of growth will be 34 whales per year after 2 years and 338 per year after 6 years.

Applied Example 7 - Solution

The whale population at the end of the eighth year will be

$$
\begin{aligned}
N(8) & =3(8)^{3}+2(8)^{2}-10(8)+600 \\
& =2184 \text { whales }
\end{aligned}
$$

