DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.
3.2 The Product and Quotient Rules

Rule 5: The Product Rule

The derivative of the product of two differentiable functions is given by

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Example 1

Find the derivative of $f(x)=\left(2 x^{2}-1\right)\left(x^{3}+3\right)$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\left(2 x^{2}-1\right) \frac{d}{d x}\left(x^{3}+3\right)+\left(x^{3}+3\right) \frac{d}{d x}\left(2 x^{2}-1\right) \\
& =\left(2 x^{2}-1\right)\left(3 x^{2}\right)+\left(x^{3}+3\right)(4 x) \\
& =6 x^{4}-3 x^{2}+4 x^{4}+12 x \\
& =x\left(10 x^{3}-3 x+12\right)
\end{aligned}
$$

Example 2

Find the derivative of $f(x)=x^{3}(\sqrt{x}+1)$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =x^{3} \frac{d}{d x}\left(x^{1 / 2}+1\right)+\left(x^{1 / 2}+1\right) \frac{d}{d x} x^{3} \\
& =x^{3}\left(\frac{1}{2} x^{-1 / 2}\right)+\left(x^{1 / 2}+1\right) 3 x^{2} \\
& =\frac{1}{2} x^{5 / 2}+3 x^{5 / 2}+3 x^{2} \\
& =\frac{7}{2} x^{5 / 2}+3 x^{2}
\end{aligned}
$$

Rule 6: The Quotient Rule

The derivative of the quotient of two differentiable functions is given by

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \quad(g(x) \neq 0)
$$

Example 3

Find the derivative of $f(x)=\frac{x}{2 x-4}$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x-4) \frac{d}{d x}(x)-x \frac{d}{d x}(2 x-4)}{(2 x-4)^{2}} \\
& =\frac{(2 x-4)(1)-x(2)}{(2 x-4)^{2}} \\
& =\frac{2 x-4-2 x}{(2 x-4)^{2}}=-\frac{4}{(2 x-4)^{2}}
\end{aligned}
$$

Example 4

Find the derivative of $f(x)=\frac{x^{2}+1}{x^{2}-1}$
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}-1\right) \frac{d}{d x}\left(x^{2}+1\right)-\left(x^{2}+1\right) \frac{d}{d x}\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{\left(x^{2}-1\right)(2 x)-\left(x^{2}+1\right)(2 x)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x^{3}-2 x-2 x^{3}-2 x}{\left(x^{2}-1\right)^{2}}=-\frac{4 x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

Applied Example 6 - Rate of Change of DVD Sales

The sales (in millions of dollars) of DVDs of a hit movie t years from the date of release is given by

$$
S(t)=\frac{5 t}{t^{2}+1}
$$

Find the rate at which the sales are changing at time t.
How fast are the sales changing at:
a. The time the DVDs are released $(t=0)$?
b. And two years from the date of release $(t=2)$?

Applied Example 6 - Solution

The rate of change at which the sales are changing at time t is given by

$$
\begin{aligned}
S^{\prime}(t) & =\frac{d}{d t}\left[\frac{5 t}{t^{2}+1}\right] \\
& =\frac{\left(t^{2}+1\right)(5)-(5 t)(2 t)}{\left(t^{2}+1\right)^{2}} \\
& =\frac{5 t^{2}+5-10 t^{2}}{\left(t^{2}+1\right)^{2}} \\
& =\frac{5\left(1-t^{2}\right)}{\left(t^{2}+1\right)^{2}}
\end{aligned}
$$

Applied Example 6 - Solution

a. The rate of change at which the sales are changing when the DVDs are released $(t=0)$ is

$$
\begin{aligned}
S^{\prime}(0) & =\frac{5\left[1-(0)^{2}\right]}{\left[(0)^{2}+1\right]^{2}} \\
& =\frac{5(1)}{(1)^{2}}=5
\end{aligned}
$$

That is, sales are increasing by $\$ 5$ million per year.

Applied Example 6 - Solution

b. The rate of change two years after the DVDs are released $(t=2)$ is

$$
\begin{aligned}
S^{\prime}(2) & =\frac{5\left[1-(2)^{2}\right]}{\left[(2)^{2}+1\right]^{2}} \\
& =\frac{5(1-4)}{(4+1)^{2}} \\
& =-\frac{15}{25}=-\frac{3}{5}=-0.6
\end{aligned}
$$

That is, sales are decreasing by $\$ 600,000$ per year.

