DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.

3.3
 The Chain Rule

Deriving Composite Functions

Consider the function $h(x)=\left(x^{2}+x+1\right)^{2}$
To compute $h^{\prime}(x)$, we can first expand $h(x)$

$$
\begin{aligned}
h(x) & =\left(x^{2}+x+1\right)^{2}=\left(x^{2}+x+1\right)\left(x^{2}+x+1\right) \\
& =x^{4}+2 x^{3}+3 x^{2}+2 x+1
\end{aligned}
$$

and then derive the resulting polynomial

$$
h^{\prime}(x)=4 x^{3}+6 x^{2}+6 x+2
$$

But how should we derive a function like $H(x)$?

$$
H(x)=\left(x^{2}+x+1\right)^{100}
$$

Deriving Composite Functions

Note that $H(x)=\left(x^{2}+x+1\right)^{100}$ is a composite function:
$H(x)$ is composed of two simpler functions

$$
f(x)=x^{2}+x+1 \quad \text { and } \quad g(x)=x^{100}
$$

So that

$$
H(x)=g[f(x)]=[f(x)]^{100}=\left(x^{2}+x+1\right)^{100}
$$

We can use this to find the derivative of $H(x)$.

Deriving Composite Functions

To find the derivative of the composite function $H(x)$:
We let $u=f(x)=x^{2}+x+1$ and $y=g(u)=u^{100}$.
Then we find the derivatives of each of these functions

$$
\frac{d u}{d x}=f^{\prime}(x)=2 x+1 \quad \text { and } \quad \frac{d y}{d u}=g^{\prime}(u)=100 u^{99}
$$

The ratios of these derivatives suggest that

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=100 u^{99}(2 x+1)
$$

Substituting $x^{2}+x+1$ for u we get

$$
H^{\prime}(x)=\frac{d y}{d x}=100\left(x^{2}+x+1\right)^{99}(2 x+1)
$$

Rule 7: The Chain Rule

If $h(x)=g[f(x)]$, then

$$
h^{\prime}(x)=\frac{d}{d x} g(f(x))=g^{\prime}(f(x)) f^{\prime}(x)
$$

Equivalently, if we write $y=h(x)=g(u)$, where $u=f(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

The Chain Rule for Power Functions

Many composite functions have the special form

$$
h(x)=g[f(x)]
$$

where g is defined by the rule

$$
g(x)=x^{n} \quad(n, \text { a real number })
$$

so that

$$
h(x)=[f(x)]^{n}
$$

In other words, the function h is given by the power of a function f.
Examples:

$$
h(x)=\left(x^{2}+x+1\right)^{100} \quad H(x)=\frac{1}{\left(5-x^{3}\right)^{3}} \quad G(x)=\sqrt{2 x^{2}+3}
$$

The General Power Rule

If the function f is differentiable and

$$
h(x)=[f(x)]^{n} \quad(n, \text { a real number }),
$$

then

$$
h^{\prime}(x)=\frac{d}{d x}[f(x)]^{n}=n[f(x)]^{n-1} f^{\prime}(x)
$$

Example 2

Find the derivative of $G(x)=\sqrt{x^{2}+1}$

Solution:
Rewrite as a power function: $G(x)=\left(x^{2}+1\right)^{1 / 2}$
Apply the general power rule:

$$
\begin{aligned}
G^{\prime}(x) & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \frac{d}{d x}\left(x^{2}+1\right) \\
& =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x) \\
& =\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Example 3

Find the derivative of $f(x)=x^{2}(2 x+3)^{5}$

Solution:

Apply the product rule and the general power rule:

$$
\begin{aligned}
f^{\prime}(x) & =x^{2} \frac{d}{d x}(2 x+3)^{5}+(2 x+3)^{5} \frac{d}{d x} x^{2} \\
& =x^{2}(5)(2 x+3)^{4}(2)+(2 x+3)^{5}(2) x \\
& =10 x^{2}(2 x+3)^{4}+2 x(2 x+3)^{5} \\
& =2 x(2 x+3)^{4}(5 x+2 x+3) \\
& =2 x(2 x+3)^{4}(7 x+3)
\end{aligned}
$$

Example 5

Find the derivative of $f(x)=\frac{1}{\left(4 x^{2}-7\right)^{2}}$
Solution:
Rewrite as a power function: $f(x)=\left(4 x^{2}-7\right)^{-2}$

Apply the general power rule:

$$
\begin{aligned}
f^{\prime}(x) & =-2\left(4 x^{2}-7\right)^{-3}(8 x) \\
& =-\frac{16 x}{\left(4 x^{2}-7\right)^{3}}
\end{aligned}
$$

Example 6

Find the derivative of $f(x)=\left(\frac{2 x+1}{3 x+2}\right)^{3}$
Solution:
Apply the general power rule and the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{2 x+1}{3 x+2}\right)^{2} \frac{d}{d x}\left(\frac{2 x+1}{3 x+2}\right) \\
& =3\left(\frac{2 x+1}{3 x+2}\right)^{2}\left[\frac{(3 x+2)(2)-(2 x+1)(3)}{(3 x+2)^{2}}\right] \\
& =3\left(\frac{2 x+1}{3 x+2}\right)^{2}\left[\frac{6 x+4-6 x-3}{(3 x+2)^{2}}\right]=\frac{3(2 x+1)^{2}}{(3 x+2)^{4}}
\end{aligned}
$$

Applied Problem 8 - Arteriosclerosis

Arteriosclerosis begins during childhood when plaque forms in the arterial walls, blocking the flow of blood through the arteries and leading to heart attacks, stroke and gangrene.

Applied Problem 8 - Arteriosclerosis

Suppose the idealized cross section of the aorta is circular with radius a cm and by year t the thickness of the plaque is

$$
h=g(t) \mathrm{cm}
$$

then the area of the opening is given by

$$
A=\pi(a-h)^{2} \mathrm{~cm}^{2}
$$

Further suppose the radius of an individual's artery is 1 cm ($a=1$) and the thickness of the plaque in year t is given by

$$
h=g(t)=1-0.01\left(10,000-t^{2}\right)^{1 / 2} \mathrm{~cm}
$$

Applied Problem 8 - Arteriosclerosis

Then we can use these functions for h and A

$$
h=g(t)=1-0.01\left(10,000-t^{2}\right)^{1 / 2} \quad A=f(h)=\pi(1-h)^{2}
$$

to find a function that gives us the rate at which A is
changing with respect to time by applying the chain rule:

$$
\begin{aligned}
\frac{d A}{d t}=\frac{d A}{d h} \cdot \frac{d h}{d t} & =f^{\prime}(h) \cdot g^{\prime}(t) \\
& =2 \pi(1-h)(-1)\left[-0.01\left(\frac{1}{2}\right)\left(10,000-t^{2}\right)^{-1 / 2}(-2 t)\right] \\
& =-2 \pi(1-h)\left[\frac{0.01 t}{\left(10,000-t^{2}\right)^{1 / 2}}\right] \\
& =-\frac{0.02 \pi(1-h) t}{\sqrt{10,000-t^{2}}}
\end{aligned}
$$

Applied Problem 8 - Arteriosclerosis

For example, at age $50(t=50)$,

$$
h=g(50)=1-0.01(10,000-2500)^{1 / 2} \approx 0.134
$$

So that

$$
\frac{d A}{d t}=\frac{0.02 \pi(1-0.134) 50}{\sqrt{10,000-2500}} \approx-0.03
$$

That is, the area of the arterial opening is decreasing at the rate of $0.03 \mathrm{~cm}^{2}$ per year for a typical 50 year old.

