DIFFERENTIATION

4

 Marginal Functions in Economics
arginal Analysis

rginal analysis is the study of the rate of change of onomic quantities.
ese may have to do with the behavior of costs, revenues, fit, output, demand, etc.
his section we will discuss the marginal analysis of ious functions related to:

- Cost
- Average Cost
- Revenue
lied Example 1 - Rate of Change of Cost Functions
ppose the total cost in dollars incurred each week by laraire for manufacturing x refrigerators is given by the al cost function

$$
C(x)=8000+200 x-0.2 x^{2} \quad(0 \leq x \leq 400)
$$

What is the actual cost incurred for manufacturing the $251^{\text {st }}$ refrigerator?
Find the rate of change of the total cost function with respect to x when $x=250$.
Compare the results obtained in parts (a) and (b).

pplied Example 1(a) - Solution

e cost incurred in producing the $251^{\text {st }}$ refrigerator is

$$
\begin{aligned}
C(251)-C(250)= & {\left[8000+200(251)-0.2(251)^{2}\right] } \\
& -\left[8000+200(250)-0.2(250)^{2}\right] \\
= & 45,599.8-45,500 \\
= & 99.80
\end{aligned}
$$

$\$ 99.80$.

plied Example 1(b) - Solution

e rate of change of the total cost function

$$
C(x)=8000+200 x-0.2 x^{2}
$$

h respect to x is given by

$$
C(x)=200-0.4 x
$$

when production is 250 refrigerators, the rate of change he total cost with respect to x is

$$
\begin{aligned}
C(x) & =200-0.4(250) \\
& =100
\end{aligned}
$$

\$100.

plied Example 1(c) - Solution

mparing the results from (a) and (b) we can see they are y similar: \$99.80 versus \$100.
s is because (a) measures the average rate of change r the interval [250, 251], while (b) measures the tantaneous rate of change at exactly $x=250$.
e smaller the interval used, the closer the average rate change becomes to the instantaneous rate of change.

arginal Analysis

e actual cost incurred in producing an additional unit of a od is called the marginal cost.
we just saw, the marginal cost is approximated by the e of change of the total cost function.
this reason, economists define the marginal cost ction as the derivative of the total cost function.

plied Example 2 - Marginal Cost Functions

ubsidiary of Elektra Electronics manufactures a portable sic player. Management determined that the daily total t of producing these players (in dollars) is

$$
C(x)=0.0001 x^{3}-0.08 x^{2}+40 x+5000
$$

ere x stands for the number of players produced. Find the marginal cost function.
Find the marginal cost for $x=200,300,400$, and 600. nterpret your results.

pplied Example 2(a) - Solution

ee total cost function is:

$$
C(x)=0.0001 x^{3}-0.08 x^{2}+40 x+5000
$$

n, its derivative is the marginal cost function:

$$
C(x)=0.0003 x^{2}-0.16 x+40
$$

pplied Example 2(b) - Solution

e marginal cost for $x=200,300,400$, and 600 is:
$C(200)=0.0003(200)^{2}-0.16(200)+40=20$
$C(300)=0.0003(300)^{2}-0.16(300)+40=19$
$C(400)=0.0003(400)^{2}-0.16(400)+40=24$
C (600) $=0.0003(600)^{2}-0.16(600)+40=52$
\$20/unit, \$19/unit, \$24/unit, and \$52/unit, respectively.

plied Example 2(c) - Solution

m part (b) we learn that at first the marginal cost is creasing, but as output increases, the marginal cost reases as well.
s is a common phenomenon that occurs because of eral factors, such as excessive costs due to overtime d high maintenance costs for keeping the plant running such a fast rate.

olied Example 5 - Marginal Revenue Functions

ppose the relationship between the unit price p in dollars d the quantity demanded x of the Acrosonic model F dspeaker system is given by the equation

$$
p=-0.02 x+400 \quad(0 \leq x \leq 20,000)
$$

Find the revenue function R.
=ind the marginal revenue function R^{\prime}.
Compute $R^{\prime}(2000)$ and interpret your result.

pplied Example 5(a) - Solution

e revenue function is given by

$$
\begin{aligned}
R(x) & =p x \\
& =(-0.02 x+400) x \\
& =-0.02 x^{2}+400 x \quad(0 \leq x \leq 20,000)
\end{aligned}
$$

pplied Example 5(b) - Solution

en the revenue function

$$
R(x)=-0.02 x^{2}+400 x
$$

find its derivative to obtain the marginal revenue ction:

$$
R^{\prime}(x)=-0.04 x+400
$$

pplied Example 5(c) - Solution

en quantity demanded is 2000, the marginal revenue be:

$$
\begin{aligned}
R^{\prime}(2000) & =-0.04(2000)+400 \\
& =320
\end{aligned}
$$

us, the actual revenue realized from the sale of the 01st loudspeaker system is approximately $\$ 320$.

plied Example 6 - Marginal Profit Function

ntinuing with the last example, suppose the total cost (in lars) of producing x units of the Acrosonic model F dspeaker system is

$$
C(x)=100 x+200,000
$$

Find the profit function P.
Find the marginal profit function P^{\prime}.
Compute P^{\prime} (2000) and interpret the result.

pplied Example 6(a) - Solution

m last example we know that the revenue function is

$$
R(x)=-0.02 x^{2}+400 x
$$

fit is the difference between total revenue and total cost, the profit function is

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =\left(-0.02 x^{2}+400 x\right)-(100 x+200,000) \\
& =-0.02 x^{2}+300 x-200,000
\end{aligned}
$$

pplied Example 6(b) - Solution

en the profit function

$$
P(x)=-0.02 x^{2}+300 x-200,000
$$

find its derivative to obtain the marginal profit function:

$$
P^{\prime}(x)=-0.04 x+300
$$

pplied Example 6(c) - Solution

Ien producing $x=2000$, the marginal profit is

$$
\begin{aligned}
P^{\prime}(2000) & =-0.04(2000)+300 \\
& =220
\end{aligned}
$$

us, the profit to be made from producing the 2001 ${ }^{\text {st }}$ dspeaker is $\$ 220$.

asticity of Demand

onomists are frequently concerned with how strongly do anges in prices cause quantity demanded to change.
e measure of the strength of this reaction is called the sticity of demand, which is given by

$$
E(p)=-\frac{\text { percentage change in quantity demanded }}{\text { percentage change in price }}
$$

ce the ratio is negative, economists use the negative of ratio to make the elasticitv be a nositive number.

asticity of Demand

ppose the price of a good increases by h dollars from p (p + h) dollars.
e percentage change of the price is

$$
\begin{gathered}
\text { Percentage } \\
\text { change in price }
\end{gathered}=\frac{\text { Change in price }}{\text { Price }}(100)=\frac{h}{p}(100)
$$

e percentage change in quantity demanded is

$$
\begin{gathered}
\text { Percentage } \\
\text { change in quantity } \\
\text { demanded }
\end{gathered}=\frac{\begin{array}{c}
\text { Change in quantity } \\
\text { demanded }
\end{array}}{\begin{array}{c}
\text { Quantity demanded } \\
\text { at price } p
\end{array}}(100)
$$

asticity of Demand

e good way to measure the effect that a percentage ange in price has on the percentage change in the antity demanded is to look at the ratio of the latter to the mer. We find

$$
\begin{aligned}
E(p)= & \begin{array}{c}
\text { Percentage } \\
\text { change in quantity } \\
\text { demanded }
\end{array} \\
\begin{array}{c}
\text { Percentage } \\
\text { change in price }
\end{array} & =\frac{\left[\frac{f(p+h)-f(p)}{f(p)}\right](100)}{\left(\frac{h}{p}\right)(100)} \\
=\frac{f(p+h)-f(p)}{f(p)} & =\frac{f(p+h)-f(p)}{h}
\end{aligned}
$$

asticity of Demand

have

$$
E(p)=\frac{\frac{f(p+h)-f(p)}{h}}{\frac{f(p)}{p}}
$$

is differentiable at p, then, when \boldsymbol{h} is small,

$$
\frac{f(p+h)-f(p)}{h} \approx f^{\prime}(p)
$$

erefore, if \boldsymbol{h} is small, the ratio is approximately equal to

$$
E(p)=\frac{f^{\prime}(p)}{\frac{f(p)}{p}}=\frac{p f^{\prime}(p)}{f(p)}
$$

asticity of Demand

Elasticity of Demand
If f is a differentiable demand function defined by $x=f(p)$, then the elasticity of demand at price p is given by

$$
E(p)=-\frac{p f^{\prime}(p)}{f(p)}
$$

ce the ratio is neoative economists use the neoative of

plied Example 7 - Elasticity of Demand

nsider the demand equation for the Acrosonic model F dspeaker system:

$$
p=-0.02 x+400 \quad(0 \leq x \leq 20,000)
$$

Find the elasticity of demand $E(p)$.
Compute $E(100)$ and interpret your result.
Compute $E(300)$ and interpret your result.

pplied Example 7(a) - Solution

ving the demand equation for x in terms of p, we get

$$
x=f(p)=-50 p+20,000
$$

m which we see that

$$
f^{\prime}(p)=-50
$$

erefore,

$$
\begin{aligned}
E(p) & =-\frac{p f^{\prime}(p)}{f(p)} \\
& =-\frac{p(-50)}{-50 p+20,000}
\end{aligned}
$$

pplied Example 7(b) - Solution

en $p=100$ the elasticity of demand is

$$
E(100)=\frac{(100)}{400-(100)}=\frac{1}{3}
$$

s means that for every 1% increase in price we can ject to see a $1 / 3 \%$ decrease in quantity demanded.
cause the response (change in quantity demanded) is s than the action (change in price), we say demand is lastic.

pplied Example 7(c) - Solution

en $p=300$ the elasticity of demand is

$$
E(300)=\frac{(300)}{400-(300)}=3
$$

s means that for every 1% increase in price we can ject to see a 3% decrease in quantity demanded.
cause the response (change in quantity demanded) is ater than the action (change in price), we say demand is stic.
mand is said to be elastic whenever $E(p)>1$.

