DIFFERENTIATION

5 Higher Order Derivatives

gher-Order Derivatives

e derivative f^{\prime} of a function f is also a function. As such, nay also be differentiated.
us, the function f^{\prime} has a derivative $f^{\prime \prime}$ at a point x in the nain of f if the limit of the quotient

$$
\frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

sts as h approaches zero. The function $f^{\prime \prime}$ obtained in manner is called the second derivative of the function f, t as the derivative f^{\prime} of f is often called the first derivative

kample 1

d the third derivative of the function $f(x)=x^{2 / 3}$ and ermine its domain.
lution:
have $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$ and $f^{\prime \prime}(x)=\frac{2}{3}\left(-\frac{1}{3}\right) x^{-4 / 3}=-\frac{2}{9} x^{-4 / 3}$
the required derivative is

$$
f^{\prime \prime \prime}(x)=-\frac{2}{9}\left(-\frac{4}{3}\right) x^{-7 / 3}=\frac{8}{27} x^{-7 / 3}=\frac{8}{27 x^{7 / 3}}
$$

e domain of the third derivative is the set of all real

rample 2(a)

d the second derivative of the function $f(x)=\left(2 x^{2}+3\right)^{3 / 2}$
lution:
ing the general power rule we get the first derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3}{2}\left(2 x^{2}+3\right)^{1 / 2}(4 x) \\
& =6 x\left(2 x^{2}+3\right)^{1 / 2}
\end{aligned}
$$

rample 2(b)

d the second derivative of the function $f(x)=\left(2 x^{2}+3\right)^{3 / 2}$

lution:

sing the product rule we get the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x \cdot \frac{d}{d x}\left(2 x^{2}+3\right)^{1 / 2}+\left(2 x^{2}+3\right)^{1 / 2} \cdot \frac{d}{d x}(6 x) \\
& =6 x \cdot\left(\frac{1}{2}\right)\left(2 x^{2}+3\right)^{-1 / 2}(4 x)+\left(2 x^{2}+3\right)^{1 / 2} \cdot 6 \\
& =12 x^{2}\left(2 x^{2}+3\right)^{-1 / 2}+6\left(2 x^{2}+3\right)^{1 / 2} \\
& =6\left(2 x^{2}+3\right)^{-1 / 2}\left[2 x^{2}+\left(2 x^{2}+3\right)\right]
\end{aligned}
$$

plied Example 4 - Acceleration of a Maglev

e distance s (in feet) covered by a maglev moving along traight track t seconds after starting from rest is given by function

$$
s=4 t^{2} \quad(0 \leq t \leq 10)
$$

lat is the maglev's acceleration after 30 seconds?
ution:
e velocity of the maglev t seconds from rest is given by

$$
v=\frac{d s}{d t}
$$

pplied Example 4 - Solution

e acceleration of the maglev t seconds from rest is given the rate of change of the velocity of t, given by

$$
\begin{aligned}
a & =\frac{d}{d t} v \\
& =\frac{d}{d t}\left(\frac{d s}{d t}\right) \\
& =\frac{d^{2} s}{d t^{2}} \\
& =\frac{d}{d t}(8 t)=8
\end{aligned}
$$

