DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.
3.6

Implicit Differentiation and Related Rates

Differentiating Implicitly

Up to now we have dealt with functions in the form

$$
y=f(x)
$$

That is, the dependent variable y has been expressed explicitly in terms of the independent variable x.

However, not all functions are expressed explicitly.

For example, consider

$$
x^{2} y+y-x^{2}+1=0
$$

This equation expresses y implicitly as a function of x.

Differentiating Implicitly

Solving for y in terms of x we get

$$
\begin{aligned}
& \left(x^{2}+1\right) y=x^{2}-1 \\
& y=f(x)=\frac{x^{2}-1}{x^{2}+1}
\end{aligned}
$$

which expresses y explicitly.

Now, consider the equation

$$
y^{4}-y^{3}-y+2 x^{3}-x=8
$$

Differentiating Implicitly

With certain restrictions placed on y and x, this equation defines y as a function of x.

But in this case it is difficult to solve for y in order to express the function explicitly.

How do we compute $d y / d x$ in this case?
The chain rule gives us a way to do this.

Example 1

Consider the equation $y^{2}=x$.
To find $d y / d x$, we differentiate both sides of the equation:

$$
\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(x)
$$

Since y is a function of x, we can rewrite $y=f(x)$ and find:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =\frac{d}{d x}[f(x)]^{2} \\
& =2 f(x) f^{\prime}(x) \\
& =2 y \frac{d y}{d x} \\
& \text { Using chain rule }
\end{aligned}
$$

Example 1

Therefore the above equation is equivalent to:

$$
2 y \frac{d y}{d x}=1
$$

Solving for $d y / d x$ yields:

$$
\frac{d y}{d x}=\frac{1}{2 y}
$$

Steps for Differentiating Implicitly

To find $d y / d x$ by implicit differentiation:

1. Differentiate both sides of the equation with respect to x.
(Make sure that the derivative of any term involving y includes the factor $d y / d x$)
2. Solve the resulting equation for $d y / d x$ in terms of x and y.

Example 2

Find $d y / d x$ for the equation $y^{3}-y+2 x^{3}-x=8$

Solution:

Differentiating both sides and solving for $d y / d x$ we get

$$
\begin{aligned}
\frac{d}{d x}\left(y^{3}-y+2 x^{3}-x\right) & =\frac{d}{d x}(8) \\
\frac{d}{d x}\left(y^{3}\right)-\frac{d}{d x}(y)+\frac{d}{d x}\left(2 x^{3}\right)-\frac{d}{d x}(x) & =\frac{d}{d x}(8) \\
3 y^{2} \frac{d y}{d x}-\frac{d y}{d x}+6 x^{2}-1 & =0
\end{aligned}
$$

Example 2 - Solution

$$
\begin{aligned}
\frac{d y}{d x}\left(3 y^{2}-1\right) & =1-6 x^{2} \\
\frac{d y}{d x} & =\frac{1-6 x^{2}}{3 y^{2}-1}
\end{aligned}
$$

Example 4

Find $d y / d x$ for the equation $x^{2} y^{3}+6 x^{2}=y+12$
Then, find the value of $d y / d x$ when $y=2$ and $x=1$.

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} y^{3}\right)+\frac{d}{d x}\left(6 x^{2}\right) & =\frac{d}{d x}(y)+\frac{d}{d x}(12) \\
x^{2} \cdot \frac{d}{d x}\left(y^{3}\right)+y^{3} \cdot \frac{d}{d x}\left(x^{2}\right)+12 x & =\frac{d y}{d x} \\
3 x^{2} y^{2} \frac{d y}{d x}+2 x y^{3}+12 x & =\frac{d y}{d x}
\end{aligned}
$$

Example 4 - Solution

$$
\begin{aligned}
\left(3 x^{2} y^{2}-1\right) \frac{d y}{d x} & =-2 x y^{3}-12 x \\
\frac{d y}{d x} & =\frac{2 x y^{3}+12 x}{1-3 x^{2} y^{2}}
\end{aligned}
$$

Substituting $y=2$ and $x=1$ we find:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x y^{3}+12 x}{1-3 x^{2} y^{2}} \\
& =\frac{2(1)(2)^{3}+12(1)}{1-3(1)^{2}(2)^{2}} \\
& =\frac{16+12}{1-12}=-\frac{28}{11}
\end{aligned}
$$

Example 5

Find $d y / d x$ for the equation $\sqrt{x^{2}+y^{2}}-x^{2}=5$
Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{2}\right)^{1 / 2}-\frac{d}{d x}\left(x^{2}\right) & =\frac{d}{d x}(5) \\
\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x+2 y \frac{d y}{d x}\right)-2 x & =0 \\
\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x+2 y \frac{d y}{d x}\right) & =4 x \\
x+y \frac{d y}{d x} & =2 x\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

Example 5 - Solution

$$
\begin{aligned}
y \frac{d y}{d x} & =2 x\left(x^{2}+y^{2}\right)^{1 / 2}-x \\
\frac{d y}{d x} & =\frac{2 x\left(x^{2}+y^{2}\right)^{1 / 2}-x}{y}
\end{aligned}
$$

Related Rates

Implicit differentiation is a useful technique for solving a class of problems known as related-rate problems. Here are some guidelines to solve related-rate problems:

1. Assign a variable to each quantity.
2. Write the given values of the variables and their rate of change with respect to t.
3. Find an equation giving the relationship between the variables.
4. Differentiate both sides of the equation implicitly with respect to t.
5. Replace the variables and their derivatives by the numerical data found in step 2 and solve the equation for the required rate of change.

Applied Example 6 - Rate of Change of Housing Starts

A study prepared for the National Association of Realtors estimates that the number of housing starts in the southwest, $N(t)$ (in millions), over the next 5 years is related to the mortgage rate $r(t)$ (percent per year) by the equation

$$
9 n^{2}+r=36
$$

What is the rate of change of the number of housing starts with respect to time when the mortgage rate is 11% per year and is increasing at the rate of 1.5\% per year?

Applied Example 6 - Solution

We are given that $r=11 \%$ and $d r / d t=1.5$ at a certain instant in time, and we are required to find $d / N / d t$.

Substitute $r=11$ into the given equation:

$$
\begin{aligned}
9 N^{2}+(11) & =36 \\
N^{2} & =\frac{25}{9} \\
N & =\frac{5}{3}
\end{aligned}
$$

(rejecting the
negative root)

Applied Example 6 - Solution

Differentiate the given equation implicitly on both sides with respect to t :

$$
\begin{gathered}
\frac{d}{d t}\left(9 N^{2}\right)+\frac{d}{d t}(r)=\frac{d}{d t}(36) \\
18 N \frac{d N}{d t}+\frac{d r}{d t}=0
\end{gathered}
$$

Applied Example 6 - Solution

Substitute $N=5 / 3$ and $d r / d t=1.5$ into this equation and solve for $d N / d t$:

$$
\begin{aligned}
18\left(\frac{5}{3}\right) \frac{d N}{d t}+1.5 & =0 \\
30 \frac{d N}{d t} & =-1.5 \\
\frac{d N}{d t} & =-\frac{1.5}{30} \\
\frac{d N}{d t} & =-0.05
\end{aligned}
$$

Thus, at the time under consideration, the number of housing starts is decreasing at rate of 50,000 units per year.

Applied Example 8 - Watching a Rocket Launch

At a distance of 4000 feet from the launch site, a spectator is observing a rocket being launched. If the rocket lifts off vertically and is rising at a speed of 600 feet per second when it is at an altitude of 3000 feet, how fast is the distance between the rocket and the spectator changing at that instant?

Applied Example 8 - Solution

1. Let

$$
\begin{aligned}
& y=\text { altitude of the rocket } \\
& x=\text { distance between the rocket and the }
\end{aligned}
$$

spectator at any time t.
2. We are told that at a certain instant in time

$$
y=3000 \text { and } \frac{d y}{d t}=600
$$

and are asked to find $d x / d t$ at that instant.

Applied Example 8 - Solution

3. Apply the Pythagorean theorem to the right triangle we find that

$$
x^{2}=y^{2}+4000^{2}
$$

Therefore, when $y=3000, x=\sqrt{3000^{2}+4000^{2}}=5000$

Applied Example 8 - Solution

4. Differentiate $x^{2}=y^{2}+4000^{2}$ with respect to t, obtaining

$$
2 x \frac{d x}{d t}=2 y \frac{d y}{d t}
$$

5. Substitute $x=5000, y=3000$, and $d y / d t=600$, to find

$$
\begin{aligned}
2(5000) \frac{d x}{d t} & =2(3000)(600) \\
\frac{d x}{d t} & =360
\end{aligned}
$$

Therefore, the distance between the rocket and the spectator is changing at a rate of 360 feet per second.

