DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.
3.7 Differentials

Increments

Let x denote a variable quantity and suppose x changes from x_{1} to x_{2}.

This change in x is called the increment in x and is denoted by the symbol Δx (read "delta x ").

Thus,

$$
\Delta x=x_{2}-x_{1}
$$

Example 1(a)

Find the increment in x as x changes from 3 to 3.2.
Solution:
Here, $x_{1}=3$ and $x_{2}=3.2$, so

$$
\begin{aligned}
D x & =x_{2}-x_{1} \\
& =3.2-3=0.2
\end{aligned}
$$

Example 1(b)

Find the increment in x as x changes from 3 to 2.7.
Solution:
Here, $x_{1}=3$ and $x_{2}=2.7$, so

$$
\begin{aligned}
\Delta x & =x_{2}-x_{1} \\
& =2.7-3=-0.3
\end{aligned}
$$

Increments

Now, suppose two quantities, x and y, are related by an equation $y=f(x)$, where f is a function.

If x changes from x to $x+\Delta x$, then the corresponding change in y is called the increment in y. It is denoted Δy and is defined by

$$
\Delta y=f(x+\Delta x)-f(x)
$$

Example 2

Let $y=x^{3}$. Find Δx and Δy when x changes from
a. 2 to 2.01 , and
b. from 2 to 1.98.

Solution:
a. Here, $\Delta x=2.01-2=0.01$

Next, $\Delta y=f(x+\Delta x)-f(x)=f(2.01)-f(2)$

$$
=(2.01)^{3}-2^{3}=8.120601-8=0.120601
$$

b. Here, $\Delta x=1.98-2=-0.02$

Next, $\Delta y=f(x+\Delta x)-f(x)=f(1.98)-f(2)$

$$
=(1.98)^{3}-2^{3}=7.762392-8=-0.237608
$$

Differentials

We can obtain a relatively quick and simple way of approximating Δy, the change in y due to small change Δx.

Observe below that near the point of tangency P, the tangent line T is close to the graph of f.

Thus, if Δx is small, then $d y$ is a good approximation of Δy.

Differentials

Notice that the slope of T is given by $d y / \Delta x$ (rise over run). But the slope of T is given by $f^{\prime}(x)$, so we have

$$
d y / \Delta x=f^{\prime}(x) \text { or } d y=f^{\prime}(x) \Delta x
$$

Thus, we have the approximation

$$
\Delta y \approx d y=f^{\prime}(x) \Delta x
$$

The quantity $d y$ is called the differential of y.

The Differential

Let $y=f(x)$ define a differentiable function x. Then

1. The differential $d x$ of the independent variable x is

$$
d x=\Delta x
$$

2. The differential $d y$ of the dependent variable y is

$$
d y=f^{\prime}(x) \Delta x=f^{\prime}(x) d x
$$

Example 4

Approximate the value of $\sqrt{26.5}$ using differentials.

Solution:

Let's consider the function $y=f(x)=\sqrt{x}$.
Since 25 is the number nearest 26.5 whose square root is readily recognized, let's take $x=25$.

We want to know the change in $y, \Delta y$, as x changes from $x=25$ to $x=26.5$, an increase of $\Delta x=1.5$.

So we find

$$
\Delta y \approx d y=f^{\prime}(x) \Delta x=\left(\left.\frac{1}{2 \sqrt{x}}\right|_{x=25}\right) \cdot(1.5)=\left(\frac{1}{10}\right)(1.5)=0.15
$$

Example 4 - Solution

Therefore,

$$
\begin{aligned}
& \sqrt{26.5}-\sqrt{25}=\Delta y \approx 0.15 \\
& \sqrt{26.5} \approx \sqrt{25}+0.15=5.15
\end{aligned}
$$

Applied Example 5 - Effect of Speed on Vehicular Operating

The total cost incurred in operating a certain type of truck on a 500-mile trip, traveling at an average speed of $v \mathrm{mph}$, is estimated to be
dollars.

$$
C(v)=125+v+\frac{4500}{v}
$$

Find the approximate change in the total operating cost when the average speed is increased from 55 to 58 mph .

Applied Example 5 - Solution

Total operating cost is given by

$$
C(v)=125+v+\frac{4500}{v}
$$

With $v=55$ an $\Delta v=d v=3$, we find

$$
\Delta C \approx d C=C^{\prime}(v) d v
$$

$$
=\left.\left(1-\frac{4500}{v^{2}}\right)\right|_{v=55}(3)
$$

$$
=\left(1-\frac{4500}{3025}\right)(3) \approx-1.46
$$

so the total operating cost is found to decrease by $\$ 1.46$.
This might explain why so many independent truckers often exceed the 55 mph speed limit.

