APPLICATIONS OF THE DERIVATIVE

Copyright © Cengage Learning. All rights reserved.

4.1

 Applications of the First Derivative
Increasing and Decreasing Functions

A function f is increasing on an interval (a, b) if for any two numbers x_{1} and x_{2} in (a, b), $f\left(x_{1}\right)<f\left(x_{2}\right)$ wherever $x_{1}<x_{2}$.

Increasing and Decreasing Functions

A function f is decreasing on an interval (a, b) if for any two numbers x_{1} and x_{2} in (a, b), $f\left(x_{1}\right)>f\left(x_{2}\right)$ wherever $x_{1}<x_{2}$.

Theorem 1

If $f^{\prime}(x)>0$ for each value of x in an interval (a, b), then f is increasing on (a, b).

If $f^{\prime}(x)<0$ for each value of x in an interval (a, b), then f is decreasing on (a, b).

If $f^{\prime}(x)=0$ for each value of x in an interval (a, b), then f is constant on (a, b).

Example 1

Find the interval where the function $f(x)=x^{2}$ is increasing and the interval where it is decreasing.

Solution:
The derivative of $f(x)=x^{2}$ is $f^{\prime}(x)=2 x$.
$f^{\prime}(x)=2 x>0$ if $x>0$
and $f^{\prime}(x)=2 x<0$ if $x<0$.
Thus, f is increasing on the interval ($0, \infty$) and decreasing on the interval $(-\infty, 0)$.

Determining the Intervals Where a Function is Increasing or Decreasing

1. Find all the values of x for which $f^{\prime}(x)=0$ or f^{\prime} is discontinuous and identify the open intervals determined by these numbers.
2. Select a test number c in each interval found in step 1 and determine the sign of $f^{\prime}(c)$ in that interval. a. If $f^{\prime}(c)>0, f$ is increasing on that interval.
b. If $f^{\prime}(c)<0, f$ is decreasing on that interval.

Example 2

Determine the intervals where the function

$$
f(x)=x^{3}-3 x^{2}-24 x+32
$$

is increasing and where it is decreasing.

Solution:

1. Find f^{\prime} and solve for $f^{\prime}(x)=0$:

$$
f^{\prime}(x)=3 x^{2}-6 x-24=3(x+2)(x-4)=0
$$

Thus, the zeros of f^{\prime} are $x=-2$ and $x=4$.
These numbers divide the real line into the intervals ($-\infty,-2$), ($-2,4$), and ($4, \infty$).

Example 2 - Solution

2. To determine the sign of $f^{\prime}(x)$ in the intervals we found $(-\infty,-2),(-2,4)$, and $(4, \infty)$, we compute $f^{\prime}(c)$ at a convenient test point in each interval.

Lets consider the values $-3,0$, and 5 :

$$
\begin{aligned}
& f^{\prime}(-3)=3(-3)^{2}-6(-3)-24=27+18-24=21>0 \\
& f^{\prime}(0)=3(0)^{2}-6(0)-24=0+0-24=-24<0 \\
& f^{\prime}(5)=3(5)^{2}-6(5)-24=75-30-24=21>0
\end{aligned}
$$

Thus, we conclude that f is increasing on the intervals $(-\infty,-2),(4, \infty)$, and is decreasing on the interval $(-2,4)$.

Example 2 - Solution

So, f increases on $(-\infty,-2),(4, \infty)$, and decreases on (-2, 4):

Example 4

Determine the intervals where $f(x)=x+\frac{1}{x}$ is increasing and where it is decreasing.

Solution:

1. Find f^{\prime} and solve for $f^{\prime}(x)=0$:

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}=0
$$

$f^{\prime}(x)=0$ when the numerator is equal to zero, so:

$$
\begin{aligned}
x^{2}-1 & =0 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

Thus, the zeros of f^{\prime} are $x=-1$ and $x=1$.

Example 4 - Solution

Also note that f^{\prime} is not defined at $x=0$, so we have four intervals to consider: $(-\infty,-1),(-1,0),(0,1)$, and $(1, \infty)$.
2. To determine the sign of $f^{\prime}(x)$ in the intervals we found $(-\infty,-1),(-1,0),(0,1)$, and $(1, \infty)$, we compute $f^{\prime}(c)$ at a convenient test point in each interval.

Lets consider the values $-2,-1 / 2,1 / 2$, and 2 :

$$
f^{\prime}(-2)=1-\frac{1}{(-2)^{2}}=1-\frac{1}{4}=\frac{3}{4}>0
$$

So f is increasing in the interval $(-\infty,-1)$.

Example 4 - Solution

$$
f^{\prime}\left(-\frac{1}{2}\right)=1-\frac{1}{\left(-\frac{1}{2}\right)^{2}}=1-\frac{1}{\frac{1}{4}}=1-4=-3<0
$$

So f is decreasing in the interval $(-1,0)$.

$$
f^{\prime}\left(\frac{1}{2}\right)=1-\frac{1}{\left(\frac{1}{2}\right)^{2}}=1-\frac{1}{\frac{1}{4}}=1-4=-3<0
$$

So f is decreasing in the interval $(0,1)$.

$$
f^{\prime}(2)=1-\frac{1}{(2)^{2}}=1-\frac{1}{4}=\frac{3}{4}>0
$$

So f is increasing in the interval $(1, \infty)$.

Example 4 - Solution

Thus, f is increasing on $(-\infty,-1)$ and $(1, \infty)$, and decreasing on ($-1,0$) and (0,1):

Relative Extrema

The first derivative may be used to help us locate high points and low points on the graph of f :

- High points are called relative maxima
- Low points are called relative minima.

Both high and low points are called relative extrema.

Relative Extrema

Relative Maximum

A function f has a relative maximum at $x=c$ if there exists an open interval (a, b) containing c such that $f(x) \leq f(c)$ for all x in (a, b).

Relative Extrema

Relative Minimum

A function f has a relative minimum at $x=c$ if there exists an open interval (a, b) containing c such that $f(x) \geq f(c)$ for all x in (a, b).

Finding Relative Extrema

Suppose that f has a relative maximum at c.
The slope of the tangent line to the graph must change from positive to negative as x increases.

Therefore, the tangent line to the graph of f at point ($c, f(c)$) must be horizontal, so that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.

Finding Relative Extrema

Suppose that f has a relative minimum at c.
The slope of the tangent line to the graph must change from negative to positive as x increases.
Therefore, the tangent line to the graph of f at point ($c, f(c)$) must be horizontal, so that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.

Finding Relative Extrema

In some cases a derivative does not exist for particular values of x.

Extrema may exist at such points, as the graph below shows:

Critical Numbers

We refer to a number in the domain of f that may give rise to a relative extremum as a critical number.

Critical number of f
A critical number of a function f is any number x in the domain of f such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

Critical Numbers

The graph below shows us several critical numbers.
At points a, b, and $c, f^{\prime}(x)=0$.
There is a corner at point d, so $f^{\prime}(x)$ does not exist there. The tangent to the curve at point e is vertical, so $f^{\prime}(x)$ does not exist there either. Note that points a, b, and d are relative extrema, while points c and e are not.

The First Derivative Test

Procedure for Finding Relative Extrema of a Continuous Function f

1. Determine the critical numbers of f.
2. Determine the sign of $f^{\prime}(x)$ to the left and right of each critical point.
a. If $f^{\prime}(x)$ changes sign from positive to negative as we move across a critical number c, then $f(c)$ is a relative maximum.
b. If $f^{\prime}(x)$ changes sign from negative to positive as we move across a critical number c, then $f(c)$ is a relative minimum.
c. If $f^{\prime}(x)$ does not change sign as we move across a critical number c, then $f(c)$ is not a relative extremum.

Example 5

Find the relative maxima and minima of $f(x)=x^{2}$

Solution:

The derivative of f is $f^{\prime}(x)=2 x$.
Setting $f^{\prime}(x)=0$ yields $x=0$ as the only critical number of f.
Since $f^{\prime}(x)<0$ if $x<0$
and $f^{\prime}(x)>0$ if $x>0$ we see that $f^{\prime}(x)$ changes sign from negative to positive as we move across 0 .

Example 6

Find the relative maxima and minima of $f(x)=x^{2 / 3}$

Solution:
The derivative of f is $f^{\prime}(x)=2 / 3 x^{-1 / 3}$.
$f^{\prime}(x)$ is not defined at $x=0$, is continuous everywhere else, and is never equal to zero in its domain.

Thus $x=0$ is the only critical number of f.

Example 6 - Solution

Since $f^{\prime}(x)<0$ if $x<0$ and $f^{\prime}(x)>0$ if $x>0$ we see that $f^{\prime}(x)$ changes sign from negative to positive as we move across 0 .

Thus, $f(0)=0$ is a relative minimum of f.

Example 7

Find the relative maxima and minima of

$$
f(x)=x^{3}-3 x^{2}-24 x+32
$$

Solution:
The derivative of f and equate to zero:

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2}-6 x-24 & =0 \\
3\left(x^{2}-2 x-8\right) & =0 \\
3(x-4)(x+2) & =0
\end{aligned}
$$

The zeros of $f^{\prime}(x)$ are $x=-2$ and $x=4$.
$f^{\prime}(x)$ is defined everywhere, so $x=-2$ and $x=4$ are the only critical numbers of f.

Example 7 - Solution

Since $f^{\prime}(x)>0$ if $x<-2$ and $f^{\prime}(x)<0$ if $0<x<4$, we see that $f^{\prime}(x)$ changes sign from positive to negative as we move across -2.

Thus, $f(-2)=60$ is a relative maximum.

Example 7 - Solution

Since $f^{\prime}(x)<0$ if $0<x<4$ and $f^{\prime}(x)>0$ if, $x>4$ we see that $f^{\prime}(x)$ changes sign from negative to positive as we move across 4.

Thus, $f(4)=-48$ is a relative minimum.

