APPLICATIONS OF THE DERIVATIVE

Copyright © Cengage Learning. All rights reserved.

4.2
 Applications of the Second Derivative

Concavity

A curve is said to be concave upwards when the slope of tangent line to the curve is increasing:

Thus, if f is differentiable on an interval (a, b), then f is concave upwards on (a, b) if f^{\prime} is increasing on (a, b).

Concavity

A curve is said to be concave downwards when the slope of tangent line to the curve is decreasing:

Thus, if f is differentiable on an interval (a, b), then f is concave downwards on (a, b) if f^{\prime} is decreasing on (a, b).

Theorem 2

Recall that $f^{\prime \prime}(x)$ measures the rate of change of the slope $f^{\prime}(x)$ of the tangent line to the graph of f at the point $(x, f(x))$. Thus, we can use $f^{\prime \prime}(x)$ to determine the concavity of f.
a. If $f^{\prime \prime}(x)>0$ for each value of x in (a, b), then f is concave upward on (a, b).
b. If $f^{\prime \prime}(x)<0$ for each value of x in (a, b), then f is concave downward on (a, b).

Steps in Determining the Concavity of f

1. Determine the values of x for which $f^{\prime \prime}$ is zero or where $f^{\prime \prime}$ is not defined, and identify the open intervals determined by these numbers.
2. Determine the sign of $f^{\prime \prime}$ in each interval found in step 1. To do this compute $f^{\prime \prime}(c)$, where c is any conveniently chosen test number in the interval.
a. If $f^{\prime \prime}(c)>0, f$ is concave upward on that interval.
b. If $f^{\prime \prime}(c)<0, f$ is concave downward on that interval.

Example 1

Determine where the function $f(x)=x^{3}-3 x^{2}-24 x+32$ is concave upward and where it is concave downward.

Solution:
Here, $f^{\prime}(x)=3 x^{2}-6 x-24$ and $f^{\prime \prime}(x)=6 x-6$

Setting $f^{\prime \prime}(c)=0$ we find

$$
\begin{array}{r}
f^{\prime \prime}(x)=6 x-6=0 \\
6(x-1)=0
\end{array}
$$

which gives $x=1$.

Example 1 - Solution

So we consider the intervals $(-\infty, 1)$ and $(1, \infty)$:

1. $f^{\prime \prime}(x)<0$ when $x<1$, so f is concave downward on $(-\infty, 1)$.
2. $f^{\prime \prime}(x)>0$ when $x>1$, so f is concave upward on $(1, \infty)$.

The graph confirms that f is concave downward on ($-\infty, 1$) and concave upward on $(1, \infty)$:

Example 2

Determine the intervals where the function $f(x)=x+\frac{1}{x}$ is concave upward and concave downward.

Solution:
Here, $f^{\prime}(x)=1-\frac{1}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{2}{x^{3}}$
So, $f^{\prime \prime}$ cannot be zero and is not defined at $x=0$.

So we consider the intervals $(-\infty, 0)$ and ($0, \infty$):

1. $f^{\prime \prime}(x)<0$ when $x<0$, so f is concave downward on $(-\infty, 0)$.
2. $f^{\prime \prime}(x)>0$ when $x>0$, so f is concave upward on $(0, \infty)$.

Example 2 - Solution

The graph confirms that f is concave downward on $(-\infty, 0)$ and concave upward on $(0, \infty)$:

Inflection Point

A point on the graph of a continuous function where the tangent line exists and where the concavity changes is called an inflection point.

Examples:

Finding Inflection Points

To find inflection points:

1. Compute $f^{\prime \prime}(x)$.
2. Determine the numbers in the domain of f for which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist.
3. Determine the sign of $f^{\prime \prime}(x)$ to the left and right of each number c found in step 2.
If there is a change in the sign of $f^{\prime \prime}(x)$ as we move across $x=c$, then $(c, f(c))$ is an inflection point of f.

Example 3

Find the points of inflection of the function $f(x)=x^{3}$

Solution:
We have $f^{\prime}(x)=3 x^{2}$ and $f^{\prime \prime}(x)=6 x$

So, $f^{\prime \prime}$ is continuous everywhere and is zero for $x=0$.

We see that $f^{\prime \prime}(x)<0$ when $x<0$, and $f^{\prime \prime}(x)>0$ when $x>0$.

Example 3 - Solution

Thus, we find that the graph of f :

- Has one and only inflection point at $f(0)=0$.
- Is concave downward on the interval $(-\infty, 0)$.
- Is concave upward on the interval $(0, \infty)$.

Example 4

Find the points of inflection of the function $f(x)=(x-1)^{5 / 3}$

Solution:
We have $f^{\prime}(x)=\frac{5}{3}(x-1)^{2 / 3}$ and $f^{\prime \prime}(x)=\frac{10}{9(x-1)^{1 / 3}}$
So, $f^{\prime \prime}$ is not defined at $x=1$, and $f^{\prime \prime}$ is never equal to zero.

We see that $f^{\prime \prime}(x)<0$ when $x<1$, and $f^{\prime \prime}(x)>0$ when $x>1$.

Example 4 - Solution

Thus, we find that the graph of f :

- Has one and only inflection point at $f(1)=0$.
- Is concave downward on the interval $(-\infty, 1)$.
- Is concave upward on the interval $(1, \infty)$.

Applied Example 7 - Effect of Advertising on Sales

The total sales S (in thousands of dollars) of Arctic Air Co., which makes automobile air conditioners, is related to the amount of money x (in thousands of dollars) the company spends on advertising its product by the formula

$$
S(x)=-0.01 x^{3}+1.5 x^{2}+200 \quad(0 \leq x \leq 100)
$$

Find the inflection point of the function S.
Discuss the meaning of this point.

Applied Example 7 - Solution

The first two derivatives of S are given by

$$
S^{\prime}(x)=-0.03 x^{2}+3 x \quad \text { and } \quad S^{\prime \prime}(x)=-0.06 x+3
$$

Setting $S^{\prime \prime}(x)=0$ gives $x=50$. So $(50, S(50))$ is the only candidate for an inflection point.

Since $S^{\prime \prime}(x)>0$ for $x<50$, and $S^{\prime \prime}(x)<0$ for $x>50$, the point $(50,2700)$ is, in fact, an inflection point of S.

This means that the firm experiences diminishing returns on advertising beyond $\$ 50,000$:

- Every additional dollar spent on advertising increases sales by less than previously spent dollars.

The Second Derivative Test

Maxima occur when a curve is concave downwards, while minima occur when a curve is concave upwards.

This is the basis of the second derivative test:

1. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
2. Find all the critical numbers of f at which $f^{\prime}(x)=0$.
3. Compute $f^{\prime \prime}(c)$, if it exists, for each critical number c.
a. If $f^{\prime \prime}(c)<0$, then f has a relative maximum at c.
b. If $f^{\prime \prime}(c)>0$, then f has a relative minimum at c.
c. If $f^{\prime \prime}(c)=0$, then the test fails (it is inconclusive).

Example 9

Determine the relative extrema of the function

$$
f(x)=x^{3}-3 x^{2}-24 x+32
$$

Solution:
We have $f^{\prime}(x)=3 x^{2}-6 x-24=3(x-4)(x+2) \quad$ so $f^{\prime}(x)=0$ gives the critical numbers $x=-2$ and $x=4$.

Next, we have $f^{\prime \prime}(x)=6 x-6$ which we use to test the critical numbers:

$$
f^{\prime \prime}(-2)=6(-2)-6=-12-6=-18<0
$$

so, $f(-2)=60$ is a relative maximum of f.

$$
f^{\prime \prime}(4)=6(4)-6=24-6=18>0
$$

so, $f(4)=-48$ is a relative minimum of f.

