APPLICATIONS OF THE DERIVATIVE

Copyright © Cengage Learning. All rights reserved.

4.3 Curve Sketching

Vertical Asymptotes

The line $x=a$ is a vertical asymptote of the graph of a function f if either

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty \text { or }-\infty
$$

or

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty \text { or }-\infty
$$

Finding Vertical Asymptotes of Rational Functions

Suppose f is a rational function

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where P and Q are polynomial functions.
Then, the line $x=a$ is a vertical asymptote of the graph of f if $Q(a)=0$ but $P(a) \neq 0$.

Example 1

Find the vertical asymptotes of the graph of the function

$$
f(x)=\frac{x^{2}}{4-x^{2}}
$$

Solution:
f is a rational function with $P(x)=x^{2}$ and $Q(x)=4-x^{2}$.

The zeros of Q are found by solving

$$
\begin{array}{r}
4-x^{2}=0 \\
(2+x)(2-x)=0
\end{array}
$$

giving $x=-2$ and $x=2$.

Example 1 - Solution

Examine $x=-2$:

$$
P(-2)=(-2)^{2}=4 \neq 0
$$

so $x=-2$ is a vertical asymptote.

Examine $x=2$:

$$
P(2)=(2)^{2}=4 \neq 0
$$

so $x=2$ is also a vertical asymptote.

Horizontal Asymptotes

The line $y=b$ is a horizontal asymptote of the graph of a function f if either

$$
\lim _{x \rightarrow \infty} f(x)=b \text { or } \lim _{x \rightarrow-\infty} f(x)=b
$$

Example 2

Find the horizontal asymptotes of the graph of the function

$$
f(x)=\frac{x^{2}}{4-x^{2}}
$$

Solution:
We compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}}{4-x^{2}} & =\lim _{x \rightarrow \infty} \frac{1}{\frac{4}{x^{2}}-1} \\
& =\frac{1}{0-1} \\
& =-1
\end{aligned}
$$

and so $y=-1$ is a horizontal asymptote.

Example 2 - Solution

We compute

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x^{2}}{4-x^{2}} & =\lim _{x \rightarrow-\infty} \frac{1}{\frac{4}{x^{2}}-1} \\
& =\frac{1}{0-1} \\
& =-1
\end{aligned}
$$

also yielding $y=-1$ as a horizontal asymptote.

Example 2 - Solution

So, the graph of f has two vertical asymptotes $x=-2$ and $x=2$, and one horizontal asymptote $y=-1$:

Asymptotes and Polynomials

A polynomial function has no vertical asymptotes.

To see this, note that a polynomial function $P(x)$ can be written as a rational function with a denominator equal to 1.

Thus,

$$
P(x)=\frac{P(x)}{1}
$$

Since the denominator is never zero, P has no vertical asymptotes.

Asymptotes and Polynomials

A polynomial function has no horizontal asymptotes.

If $P(x)$ is a polynomial of degree greater or equal to 1 , then

$$
\lim _{x \rightarrow \infty} P(x) \text { and } \lim _{x \rightarrow-\infty} P(x)
$$

are either infinity or minus infinity; that is, they do not exist.

Therefore, P has no horizontal asymptotes.

A Guide to Sketching a Curve

1. Determine the domain of f.
2. Find the x - and y-intercepts of f.
3. Determine the behavior of f for large absolute values of x.
4. Find all horizontal and vertical asymptotes of f.
5. Determine the intervals where f is increasing and where f is decreasing.
6. Find the relative extrema of f.
7. Determine the concavity of f.
8. Find the inflection points of f.
9. Plot a few additional points to help further identify the shape of the graph of f and sketch the graph.

Example 3

Sketch the graph of the function $f(x)=x^{3}-6 x^{2}+9 x+2$
Solution:

1. The domain of f is the interval $(-\infty, \infty)$.
2. By setting $x=0$, we find that the y-intercept is 2 .
(The x-intercept is not readily obtainable)
3. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(x^{3}-6 x^{2}+9 x+2\right)=-\infty \\
& \lim _{x \rightarrow \infty}\left(x^{3}-6 x^{2}+9 x+2\right)=\infty
\end{aligned}
$$

we see that f decreases without bound as x decreases without bound and that f increases without bound when x increases without bound.

Example 3 - Solution

4. Since f is a polynomial function, there are no asymptotes.
5. $f^{\prime}(x)=3 x^{2}-12 x+9=3(x-3)(x-1)$

Setting $f^{\prime}(x)=0$ gives $x=1$ and $x=3$ as critical points.
Testing with different values of x we find that $f^{\prime}(x)>0$ when $x<1, f^{\prime}(x)<0$ when $1<x<3$, and $f^{\prime}(x)>0$ when $x>3$.

Thus, f is increasing in the intervals $(-\infty, 1)$ and $(3, \infty)$, and f is decreasing in the interval $(1,3)$.

Example 3 - Solution

6. f^{\prime} changes from positive to negative as we go across $x=1$, so a relative maximum of f occurs at $(1, f(1))=(1,6)$.
f^{\prime} changes from negative to positive as we go across $x=3$, so a relative minimum of f occurs at $(3, f(3))=(1,2)$.
7. $f^{\prime \prime}(x)=6 x-12=6(x-2)$ which is equal to zero when $x=2$.

Testing with different values of x we find that $f^{\prime \prime}(x)<0$ when $x<2$ and $f^{\prime \prime}(x)>0$ when $2<x$.

Thus, f is concave downward in the interval $(-\infty, 2)$ and concave upward in the interval $(2, \infty)$.

Example 3 - Solution

8. Since $f^{\prime \prime}(2)=0$, we have an inflection point at

$$
(2, f(2))=(2,4) .
$$

Summarizing, we've found the following:

- Domain: $(-\infty, \infty)$.
- Intercept: (0, 2).
- $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
- Asymptotes: None.
- f is increasing in the intervals $(-\infty, 1)$ and $(3, \infty)$, and f is decreasing in the interval $(1,3)$.

Example 3 - Solution

- A relative maximum of f occurs at $(1,6)$.
- A relative minimum of f occurs at $(1,2)$.
- f is concave downward in the interval $(-\infty, 2)$ and f is concave upward in the interval $(2, \infty)$.
- f has an inflection point at $(2,4)$.

Example 3 - Solution

Sketch the graph:

Example 3 - Solution

Sketch the graph:

Example 4

Sketch the graph of the function $f(x)=\frac{x+1}{x-1}$
Solution:

1. f is undefined when $x=1$, so the domain of f is the set of all real numbers other than $x=1$.
2. Setting $y=0$, gives an x-intercept of -1 . Setting $x=0$, gives an y-intercept of -1 .

Example 4 - Solution

3. Since $\lim _{x \rightarrow-\infty} \frac{x+1}{x-1}=1$ and $\lim _{x \rightarrow \infty} \frac{x+1}{x-1}=1$
we see that $f(x)$ approaches the line $y=1$ as $|x|$ becomes arbitrarily large.

- For $x>1, f(x)>1$, so f approaches the line $y=1$ from above.
- For $x<1, f(x)<1$, so f approaches the line $y=1$ from below.

4. From step three we conclude that $y=1$ is a horizontal asymptote of f.
Also, the straight line $x=1$ is a vertical asymptote of f.

Example 4 - Solution

5. $f^{\prime}(x)=\frac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}=-\frac{2}{(x-1)^{2}}$

So, $f^{\prime}(x)$ is discontinuous at $x=1$ and is never equal to zero. Testing we find that $f^{\prime}(x)<0$ wherever it is defined.
6. From step 5 we see that there are no critical numbers of f, since $f^{\prime}(x)$ is never equal to zero.

Example 4 - Solution

7. $f^{\prime \prime}(x)=\frac{d}{d x}\left[-2(x-1)^{-2}\right]=4(x-1)^{-3}=\frac{4}{(x-1)^{3}}$

Testing with different values of x we find that $f^{\prime \prime}(x)<0$ when $x<1$ and $f^{\prime \prime}(x)>0$ when $1<x$.

Thus, f is concave downward in the interval $(-\infty, 1)$ and concave upward in the interval $(1, \infty)$.
8. From point 7 we see there are no inflection points of f, since $f^{\prime \prime}(x)$ is never equal to zero.

Example 4 - Solution

Summarizing, we've found the following:

- Domain: $(-\infty, 1) \cup(1, \infty)$.
- Intercept: $(0,-1)$; $(-1,0)$.
- $\lim _{x \rightarrow-\infty} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=1$
- Asymptotes: $x=1$ is a vertical asymptote.

$$
y=1 \text { is a horizontal asymptote. }
$$

- f is decreasing everywhere in the domain of f.
- Relative extrema: None.
- f is concave downward in the interval $(-\infty, 1)$ and f is concave upward in the interval $(1, \infty)$.
- f has no inflection points.

Example 4 - Solution

Sketch the graph:

