APPLICATIONS OF THE DERIVATIVE

Copyright © Cengage Learning. All rights reserved.

Optimization I

Absolute Extrema

The absolute extrema of a function f

- If $f(x) \leq f(c)$ for all x in the domain of f, then $f(c)$ is called the absolute maximum value of f.
- If $f(x) \geq f(c)$ for all x in the domain of f, then $f(c)$ is called the absolute minimum value of f.

Example

f has an absolute minimum at (0,0):

Example

f has an absolute maximum at (0, 4):

Example

f has an absolute minimum at $(-\sqrt{2} / 2,-1 / 2)$: and an absolute maximum at ($\sqrt{2} / 2,1 / 2$):

Example

f has no absolute extrema:

Theorem 3

Absolute Extrema in a Closed Interval

- If a function f is continuous on a closed interval [a, b], then f has both an absolute maximum value and an absolute minimum value on $[a, b]$.

Example

The relative minimum of f at x_{3} is also the absolute minimum of f. The right endpoint b of the interval $[\mathrm{a}, \mathrm{b}]$ gives rise to the absolute maximum value $f(b)$ of f.

Finding Absolute Extrema

To find the absolute extrema of f on a closed interval $[a, b]$.

1. Find the critical numbers of f that lie on (a, b).
2. Compute the value of f at each critical number found in step 1 and compute $f(a)$ and $f(b)$.
3. The absolute maximum value and absolute minimum value of f will correspond to the largest and smallest numbers, respectively, found in step 2.

Example 1

Find the absolute extrema of the function $F(x)=x^{2}$ defined on the interval $[-1,2]$.

Solution:
The function F is continuous on the closed interval $[-1,2]$ and differentiable on the open interval $(-1,2)$.

Setting $F^{\prime}=0$, we get $F^{\prime}(x)=2 x=0$, so there is only one critical point at $x=0$.

Example 1 - Solution

So, $F(-1)=(-1)^{2}=1, \quad F(0)=(0)^{2}=0$, and $F(2)=(2)^{2}=4$. It follows that 0 is the absolute minimum of F, and 4 is the absolute maximum of F.

Example 2

Find the absolute extrema of the function

$$
f(x)=x^{3}-2 x^{2}-4 x+4
$$

defined on the interval $[0,3]$.

Solution:
The function f is continuous on the closed interval $[0,3]$ and differentiable on the open interval $(0,3)$.

Setting $f^{\prime}=0$, we get

$$
f^{\prime}(x)=3 x^{2}-4 x-4=(3 x+2)(x-2)=0
$$

which gives two critical points at $x=-2 / 3$ and $x=2$.

Example 2 - Solution

We drop $x=-2 / 3$ since it lies outside the interval [0,3$]$. So, $f(0)=4, f(2)=-4$, and $f(3)=1$. It follows that -4 is the absolute minimum of f, and 4 is the absolute maximum of f.

Applied Example 4 - Maximizing Profits

Acrosonic's total profit (in dollars) from manufacturing and selling x units of their model F speakers is given by

$$
P(x)=-0.02 x^{2}+300 x-200,000 \quad(0 \leq x \leq 20,000)
$$

How many units of the loudspeaker system must Acrosonic produce to maximize profits?

Solution:
To find the absolute maximum of P on $[0,20,000]$, first find the stationary points of P on the interval ($0,20,000$).

Applied Example 4 - Solution

Setting $f^{\prime}=0$, we get

$$
\begin{aligned}
P^{\prime}(x) & =-0.04 x+300=0 \\
x & =\frac{300}{0.04}=7500
\end{aligned}
$$

which gives us only one stationary point at $x=7500$.
Evaluating the only stationary point we get

$$
P(7500)=925,000
$$

Evaluating the endpoints we get

$$
\begin{aligned}
P(0) & =-200,000 \\
P(20,000) & =-2,200,000
\end{aligned}
$$

Applied Example 4 - Solution

Thus, Acrosonic will realize the maximum profit of $\$ 925,000$ by producing 7500 speakers.

