5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Copyright © Cengage Learning. All rights reserved.

5.1 Exponential Functions

Copyright © Cengage Learning. All rights reserved.

Exponential Function

The function defined by

 $f(x) = b^x \qquad (b > 0, \ b \neq 1)$

is called an exponential function with base *b* and exponent *x*. The domain of *f* is the set of all real numbers.

The exponential function with base 2 is the function

 $f(x) = 2^x$

with domain $(-\infty, \infty)$. Find the values of f(x) for selected values of x follow:

f(0) =

$$f(3) = 2^{3} = 8$$
$$f\left(\frac{3}{2}\right) = 2^{3/2} = 2 \cdot 2^{1/2} = 2\sqrt{2}$$

$$f(-1) = 2^{-1} = \frac{1}{2}$$
$$f\left(-\frac{2}{3}\right) = 2^{-2/3} = \frac{1}{2^{2/3}} = \frac{1}{\sqrt[3]{4}}$$

Laws of Exponents

Let *a* and *b* be positive numbers and let *x* and *y* be real numbers. Then,

$$1. b^x \cdot b^y = b^{x+y}$$

2.
$$\frac{b^{x}}{b^{y}} = b^{x-y}$$

3.
$$(b^{x})^{y} = b^{xy}$$

4.
$$(ab)^{x} = a^{x}b^{x}$$

5. $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$

Let $f(x) = 2^{2x-1}$. Find the value of x for which f(x) = 16.

Solution: We want to solve the equation

 $2^{2x-1} = 16 = 2^4$

But this equation holds if and only if

giving $x = \frac{5}{2}$. 2x - 1 = 4

Sketch the graph of the exponential function $f(x) = 2^x$.

Solution:

First, recall that the domain of this function is the set of real numbers.

Next, putting x = 0 gives $y = 2^0 = 1$, which is the *y*-intercept. (There is no *x*-intercept, since there is no value of *x* for which y = 0.)

Example 3 – Solution

Now, consider a few values for x:

Note that 2^x approaches zero as x decreases without bound: There is a horizontal asymptote at y = 0.

Furthermore, 2^x increases without bound when x increases without bound.

Thus, the range of f is the interval $(0, \infty)$.

Example 3 – Solution

cont'd

Finally, sketch the graph:

Sketch the graph of the exponential function $f(x) = (1/2)^x$.

Solution: First, recall again that the domain of this function is the set of real numbers.

Next, putting x = 0 gives $y = (1/2)^0 = 1$, which is the y-intercept. (There is no x-intercept, since there is no value of x for which y = 0.)

Example 4 – Solution

Now, consider a few values for x:

Note that $(1/2)^x$ increases without bound when x decreases without bound.

Furthermore, $(1/2)^x$ approaches zero as x increases without bound: there is a horizontal asymptote at y = 0.

As before, the range of f is the interval $(0, \infty)$.

Example 4 – Solution

Finally, sketch the graph:

Example 4 – Solution

Note the symmetry between the two functions:

14

Properties of Exponential Functions

The exponential function $y = b^x$ (b > 0, $b \neq 1$) has the following properties:

- 1. Its domain is $(-\infty, \infty)$.
- 2. Its range is $(0, \infty)$.
- 3. Its graph passes through the point (0, 1).
- 4. It is continuous on $(-\infty, \infty)$.
- 5. It is increasing on $(-\infty, \infty)$ if b > 1 and decreasing on $(-\infty, \infty)$ if b < 1.

The Base e

Exponential functions to the base *e*, where *e* is an irrational number whose value is 2.7182818..., play an important role in both theoretical and applied problems.

It can be shown that

$$e = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m$$

Sketch the graph of the exponential function $f(x) = e^x$.

Solution: Since $e^x > 0$ it follows that the graph of $y = e^x$ is similar to the graph of $y = 2^x$.

Consider a few values for x:

Example 5 – Solution

cont'd

Sketching the graph:

Sketch the graph of the exponential function $f(x) = e^{-x}$.

Solution: Since $e^{-x} > 0$ it follows that 0 < 1/e < 1 and so $f(x) = e^{-x} = 1/e^x = (1/e)^x$ is an exponential function with base less than 1.

Therefore, it has a graph similar to that of $y = (1/2)^{x}$.

Consider a few values for x:

Example 6 – Solution

Sketching the graph:

