EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Copyright © Cengage Learning. All rights reserved.
5.1

Exponential Functions

Exponential Function

The function defined by

$$
f(x)=b^{x} \quad(b>0, b \neq 1)
$$

is called an exponential function with base b and exponent x.
The domain of f is the set of all real numbers.

Example

The exponential function with base 2 is the function

$$
f(x)=2^{x}
$$

with domain $(-\infty, \infty)$.
Find the values of $f(x)$ for selected values of x follow:

$$
\begin{aligned}
& f(3)=2^{3}=8 \\
& f\left(\frac{3}{2}\right)=2^{3 / 2}=2 \cdot 2^{1 / 2}=2 \sqrt{2} \\
& f(0)=2^{0}=1
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(-1)=2^{-1}=\frac{1}{2} \\
& f\left(-\frac{2}{3}\right)=2^{-2 / 3}=\frac{1}{2^{2 / 3}}=\frac{1}{\sqrt[3]{4}}
\end{aligned}
$$

Laws of Exponents

Let a and b be positive numbers and let x and y be real numbers. Then,

$$
\begin{aligned}
& \text { 1. } b^{x} \cdot b^{y}=b^{x+y} \\
& \text { 2. } \frac{b^{x}}{b^{y}}=b^{x-y} \\
& \text { 3. }\left(b^{x}\right)^{y}=b^{x y} \\
& \text { 4. }(a b)^{x}=a^{x} b^{x} \\
& \text { 5. }\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
\end{aligned}
$$

Example 2

Let $f(x)=2^{2 x-1}$. Find the value of x for which $f(x)=16$.
Solution:
We want to solve the equation

$$
2^{2 x-1}=16=2^{4}
$$

But this equation holds if and only if
giving $x=\frac{5}{2}$.

Example 3

Sketch the graph of the exponential function $f(x)=2^{x}$.
Solution:
First, recall that the domain of this function is the set of real numbers.

Next, putting $x=0$ gives $y=2^{0}=1$, which is the y-intercept. (There is no x-intercept, since there is no value of x for which $y=0$.)

Example 3 - Solution

Now, consider a few values for x :

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	$1 / 32$	$1 / 16$	$1 / 8$	$1 / 4$	$1 / 2$	1	2	4	8	16	32

Note that 2^{x} approaches zero as x decreases without bound: There is a horizontal asymptote at $y=0$.

Furthermore, 2^{x} increases without bound when x increases without bound.

Thus, the range of f is the interval $(0, \infty)$.

Example 3 - Solution

Finally, sketch the graph:

Example 4

Sketch the graph of the exponential function $f(x)=(1 / 2)^{x}$.
Solution:
First, recall again that the domain of this function is the set of real numbers.

Next, putting $x=0$ gives $y=(1 / 2)^{0}=1$, which is the y-intercept.
(There is no x-intercept, since there is no value of x for which $y=0$.)

Example 4 - Solution

Now, consider a few values for x :

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	32	16	8	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$

Note that (1/2)x increases without bound when x decreases without bound.

Furthermore, (1/2)x approaches zero as x increases without bound: there is a horizontal asymptote at $y=0$.

As before, the range of f is the interval $(0, \infty)$.

Example 4 - Solution

Finally, sketch the graph:

Example 4 - Solution

Note the symmetry between the two functions:

Properties of Exponential Functions

The exponential function $y=b^{x}(b>0, b \neq 1)$ has the following properties:

1. Its domain is $(-\infty, \infty)$.
2. Its range is $(0, \infty)$.
3. Its graph passes through the point $(0,1)$.
4. It is continuous on $(-\infty, \infty)$.
5. It is increasing on $(-\infty, \infty)$ if $b>1$ and decreasing on $(-\infty, \infty)$ if $b<1$.

The Base e

Exponential functions to the base e, where e is an irrational number whose value is $2.7182818 . .$. , play an important role in both theoretical and applied problems.

It can be shown that

$$
e=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}
$$

Example 5

Sketch the graph of the exponential function $f(x)=e^{x}$.
Solution:
Since $e^{x}>0$ it follows that the graph of $y=e^{x}$ is similar to the graph of $y=2^{x}$.

Consider a few values for x :

x	-3	-2	-1	0	1	2	3
y	0.05	0.14	0.37	1	2.72	7.39	20.09

Example 5 - Solution

Sketching the graph:

Example 6

Sketch the graph of the exponential function $f(x)=e^{-x}$.

Solution:
Since $e^{-x}>0$ it follows that $0<1 / e<1$ and so $f(x)=e^{-x}=1 / e^{x}=(1 / e)^{x}$ is an exponential function with base less than 1 .

Therefore, it has a graph similar to that of $y=(1 / 2)^{x}$.
Consider a few values for x :

x	-3	-2	-1	0	1	2	3
y	20.09	7.39	2.72	1	0.37	0.14	0.05

Example 6 - Solution

Sketching the graph:

