EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Copyright © Cengage Learning. All rights reserved.

5.2 Logarithmic Functions

Logarithms

We've discussed exponential equations of the form

$$
y=b^{x} \quad(b>0, b \neq 1)
$$

But what about solving the same equation for y ?
You may recall that y is called the logarithm of x to the base b, and is denoted $\log _{b} x$.

Logarithm of x to the base b
$y=\log _{b} x \quad$ if and only if $x=b^{y} \quad(x>0)$

Example 2(a)

Solve $\log _{3} x=4$ for x :

Solution:
By definition, $\log _{3} x=4$ implies $x=3^{4}=81$.

Example 2(b)

Solve $\log _{16} 4=x$ for x :

Solution:
$\log _{16} 4=x$ is equivalent to $4=16^{x}=\left(4^{2}\right)^{x}=4^{2 x}$, or $4^{1}=4^{2 x}$, from which we deduce that

$$
\begin{array}{r}
2 x=1 \\
x=\frac{1}{2}
\end{array}
$$

Example 2(c)

Solve $\log _{x} 8=3$ for x :
Solution:
By definition, we see that $\log _{x} 8=3$ is equivalent to

$$
\begin{aligned}
& 8=2^{3}=x^{3} \\
& x=2
\end{aligned}
$$

Logarithmic Notation

$$
\begin{aligned}
\log x & =\log _{10} x & & \text { Common logarithr } \\
\text { In } x & =\log _{e} x & & \text { Natural logarithm }
\end{aligned}
$$

Laws of Logarithms

If m and n are positive numbers, then

1. $\log _{b} m n=\log _{b} m+\log _{b} n$
2. $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
3. $\log _{b} m^{n}=n \log _{b} m$
4. $\log _{b} 1=0$
5. $\log _{b} b=1$

Example 4(a)

Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find $\log 15$.

Solution:

$$
\begin{aligned}
\log 15 & =\log 3 \cdot 5 \\
& =\log 3+\log 5 \\
& \approx 0.4771+0.6990 \\
& =1.1761
\end{aligned}
$$

Example 4(b)

Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find $\log 7.5$.

Solution:

$$
\begin{aligned}
\log 7.5 & =\log (15 / 2) \\
& =\log (3 \cdot 5 / 2) \\
& =\log 3+\log 5-\log 2 \\
& \approx 0.4771+0.6990-0.3010 \\
& =0.8751
\end{aligned}
$$

Example 4(c)

Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find $\log 81$.

Solution:

$$
\begin{aligned}
\log 81 & =\log 3^{4} \\
& =4 \log 3 \\
& \approx 4(0.4771) \\
& =1.9084
\end{aligned}
$$

Example 4(d)

Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find $\log 50$.

Solution:

$$
\begin{aligned}
\log 50 & =\log 5 \cdot 10 \\
& =\log 5+\log 10 \\
& \approx 0.6990+1 \\
& =1.6990
\end{aligned}
$$

Example 5(a)

Expand and simplify the expression $\log _{3} x^{2} y^{3}$.

Solution:

$$
\begin{aligned}
\log _{3} x^{2} y^{3} & =\log _{3} x^{2}+\log _{3} y^{3} \\
& =2 \log _{3} x+3 \log _{3} y
\end{aligned}
$$

Example 5(b)

Expand and simplify the expression $\log _{2} \frac{x^{2}+1}{2^{x}}$.
Solution:

$$
\begin{aligned}
\log _{2} \frac{x^{2}+1}{2^{x}} & =\log _{2}\left(x^{2}+1\right)-\log _{2} 2^{x} \\
& =\log _{2}\left(x^{2}+1\right)-x \log _{2} 2 \\
& =\log _{2}\left(x^{2}+1\right)-x
\end{aligned}
$$

Example 5(c)

Expand and simplify the expression $\ln \frac{x^{2} \sqrt{x^{2}-1}}{e^{x}}$.
Solution:

$$
\begin{aligned}
\ln \frac{x^{2} \sqrt{x^{2}-1}}{e^{x}} & =\ln \frac{x^{2}\left(x^{2}-1\right)^{1 / 2}}{e^{x}} \\
& =\ln x^{2}+\ln \left(x^{2}-1\right)^{1 / 2}-\ln e^{x} \\
& =2 \ln x+\frac{1}{2} \ln \left(x^{2}-1\right)-x \ln e \\
& =2 \ln x+\frac{1}{2} \ln \left(x^{2}-1\right)-x
\end{aligned}
$$

Logarithmic Function

The function defined by

$$
\left.f(x)=\log _{b} x \quad(b>0), b \neq 1\right)
$$

is called the logarithmic function with base b.
The domain of f is the set of all positive numbers.

Properties of Logarithmic Functions

The logarithmic function

$$
y=\log _{b} x \quad(b>0, b \neq 1)
$$

has the following properties:

1. Its domain is $(0, \infty)$.
2. Its range is $(-\infty, \infty)$.
3. Its graph passes through the point $(1,0)$.
4. It is continuous on $(0, \infty)$.
5. It is increasing on $(0, \infty)$ if $b>1$ and decreasing on $(0, \infty)$ if $b<1$.

Example 6

Sketch the graph of the function $y=\ln x$.

Solution:

We first sketch the graph of $y=e^{x}$.

The required graph is the mirror image of the graph of $y=e x$ with respect to the line $y=x$:

Properties Relating Exponential and Logarithmic Functions

Properties relating e^{x} and $\ln x$:

$$
\begin{array}{ll}
e^{\ln x}=x & (x>0) \\
\ln e^{x}=x & (\text { for any real number } x)
\end{array}
$$

Example 7

Solve the equation $2 e^{x+2}=5$.

Solution:

Divide both sides of the equation by 2 to obtain:

$$
e^{x+2}=\frac{5}{2}=2.5
$$

Take the natural logarithm of each side of the equation and solve:

$$
\begin{aligned}
\ln e^{x+2} & =\ln 2.5 \\
(x+2) \ln e & =\ln 2.5 \\
x+2 & =\ln 2.5 \\
x & =-2+\ln 2.5 \\
x & \approx-1.08
\end{aligned}
$$

Example 8

Solve the equation $5 \ln x+3=0$
Solution:
Add -3 to both sides of the equation and then divide both sides of the equation by 5 to obtain:

$$
\begin{aligned}
5 \ln x & =-3 \\
\ln x & =-\frac{3}{5}=-0.6
\end{aligned}
$$

and so:

$$
\begin{aligned}
e^{\ln x} & =e^{-0.6} \\
x & =e^{-0.6} \\
x & \approx 0.55
\end{aligned}
$$

