5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Copyright © Cengage Learning. All rights reserved.

5.2 Logarithmic Functions

Copyright © Cengage Learning. All rights reserved.

Logarithms

We've discussed exponential equations of the form

 $y = b^{x} \qquad (b > 0, b \neq 1)$

But what about solving the same equation for *y*?

You may recall that *y* is called the logarithm of *x* to the base *b*, and is denoted $\log_b x$.

Logarithm of x to the base b $y = \log_b x$ if and only if $x = b^y$ (x > 0)

Example 2(a)

Solve $\log_3 x = 4$ for x:

Solution: By definition, $\log_3 x = 4$ implies $x = 3^4 = 81$.

Example 2(b)

Solve $\log_{16}4 = x$ for x:

Solution:

 $\log_{16}4 = x$ is equivalent to $4 = 16^{x} = (4^{2})^{x} = 4^{2x}$, or $4^{1} = 4^{2x}$, from which we deduce that

2x = 1 $x = \frac{1}{2}$

Example 2(c)

Solve $\log_x 8 = 3$ for x:

Solution:

By definition, we see that $\log_x 8 = 3$ is equivalent to

$$8 = 2^3 = x^3$$

$$x = 2$$

Logarithmic Notation

 $\log x = \log_{10} x$ $\ln x = \log_e x$ Natural logarithm

Common logarithm

Laws of Logarithms

If *m* and *n* are positive numbers, then 1. $\log_b mn = \log_b m + \log_b n$ $2. \ \log_b \frac{m}{n} = \log_b m - \log_b n$ 3. $\log_b m^n = n \log_b m$ 4. $\log_{h} 1 = 0$ 5. $\log_{b} b = 1$

Example 4(a)

Given that log 2 \approx 0.3010, log 3 \approx 0.4771, and log 5 \approx 0.6990, use the laws of logarithms to find log 15.

Solution:

log 15 = log 3.5= log 3 + log 5 $\approx 0.4771 + 0.6990$ = 1.1761

Example 4(b)

Given that log 2 \approx 0.3010, log 3 \approx 0.4771, and log 5 \approx 0.6990, use the laws of logarithms to find log 7.5.

Solution:

log 7.5 = log(15/2)= log(3.5/2) = log 3 + log 5 - log 2 $\approx 0.4771 + 0.6990 - 0.3010$ = 0.8751

Example 4(c)

Given that log 2 \approx 0.3010, log 3 \approx 0.4771, and log 5 \approx 0.6990, use the laws of logarithms to find log 81.

Solution:

 $log 81 = log 3^{4}$ = 4 log 3 $\approx 4(0.4771)$ = 1.9084

Example 4(d)

Given that log 2 \approx 0.3010, log 3 \approx 0.4771, and log 5 \approx 0.6990, use the laws of logarithms to find log 50.

Solution:

 $log 50 = log 5 \cdot 10$ = log 5 + log 10 $\approx 0.6990 + 1$ = 1.6990

Example 5(a)

Expand and simplify the expression $\log_3 x^2 y^3$.

Solution: $\log_3 x^2 y^3 = \log_3 x^2 + \log_3 y^3$ $= 2\log_3 x + 3\log_3 y$

Example 5(b)

Expand and simplify the expression $\log_2 \frac{x^2 + 1}{2^x}$

Solution:

$$\log_{2} \frac{x^{2} + 1}{2^{x}} = \log_{2} (x^{2} + 1) - \log_{2} 2^{x}$$
$$= \log_{2} (x^{2} + 1) - x \log_{2} 2$$
$$= \log_{2} (x^{2} + 1) - x$$

Example 5(c)

Expand and simplify the expression]

$$\ln \frac{x^2 \sqrt{x^2 - 1}}{e^x}$$

Solution:

$$\ln \frac{x^2 \sqrt{x^2 - 1}}{e^x} = \ln \frac{x^2 (x^2 - 1)^{1/2}}{e^x}$$
$$= \ln x^2 + \ln (x^2 - 1)^{1/2} - \ln e^x$$
$$= 2 \ln x + \frac{1}{2} \ln (x^2 - 1) - x \ln e$$
$$= 2 \ln x + \frac{1}{2} \ln (x^2 - 1) - x$$

Logarithmic Function

The function defined by

 $f(x) = \log_b x$ (b > 0), b \neq 1)

is called the logarithmic function with base *b*. The domain of *f* is the set of all positive numbers.

Properties of Logarithmic Functions

The logarithmic function $(b > 0, b \neq 1)$ $y = \log_{h} x$ has the following properties: 1. Its domain is $(0, \infty)$. 2. Its range is $(-\infty, \infty)$. **3.** Its graph passes through the point (1, 0). **4.** It is continuous on $(0, \infty)$. 5. It is increasing on $(0, \infty)$ if b > 1 and decreasing on $(0, \infty)$ if b < 1.

Example 6

Sketch the graph of the function $y = \ln x$.

Solution: We first sketch the graph of $y = e^x$.

The required graph is the mirror image of the graph of y = ex with respect to the line y = x:

 $y = \ln x$

X

 $= e^{\lambda}$

Properties Relating Exponential and Logarithmic Functions

Example 7

Solve the equation $2e^{x+2} = 5$.

Solution: Divide both sides of the equation by 2 to obtain:

$$e^{x+2} = \frac{5}{2} = 2.5$$

Take the natural logarithm of each side of the equation and solve: $\ln e^{x+2} = \ln 2.5$

$$(x+2) \ln e = \ln 2.5$$
$$x+2 = \ln 2.5$$
$$x = -2 + \ln 2.5$$
$$x \approx -1.08$$

Example 8

Solve the equation $5 \ln x + 3 = 0$.

Solution:

Add -3 to both sides of the equation and then divide both sides of the equation by 5 to obtain:

$$5 \ln x = -3$$

 $\ln x = -\frac{3}{5} = -0.6$

and so:

$$e^{\ln x} = e^{-0.6}$$

$$x = e^{-0.4}$$

 $x \approx 0.55$