INTEGRATION

Copyright © Cengage Learning. All rights reserved.

6.1
 Antiderivatives and the Rules of Integration

Antiderivatives

Recall the Maglev problem discussed in chapter 2.

The question asked then was:

- If we know the position of the maglev at any time t, can we find its velocity at that time?
- The position was described by $f(t)$, and the velocity by $f^{\prime}(t)$.

Antiderivatives

Now, in Chapters 6 and 7 we will consider precisely the opposite problem:

- If we know the velocity of the maglev at any time t, can we find its position at that time?
- That is, knowing its velocity function $f^{\prime}(t)$, can we find its position function $f(t)$?

Antiderivatives

To solve this kind of problems, we need the concept of the antiderivative of a function.

A function F is an antiderivative of f on an interval $/$ if $F^{\prime}(t)=f(t)$ for all of t in I.

Example 1

Let $F(x)=\frac{1}{3} x^{3}-2 x^{2}+x-1$. Show that F is an antiderivative of $f(x)=x^{2}-4 x+1$

Solution:
Differentiating the function F, we obtain

$$
F^{\prime}(x)=x^{2}-4 x+1=f(x)
$$

and the desired result follows.

Example 2

Let $F(x)=x, G(x)=x+2, H(x)=x+C$, where C is a constant. Show that F, G, and H are all antiderivatives of the function f defined by $f(x)=1$.

Solution:
Since $\quad F^{\prime}(x)=\frac{d}{d x}(x)=1=f(x)$

$$
\begin{aligned}
G^{\prime}(x) & =\frac{d}{d x}(x+2)=1=f(x) \\
H^{\prime}(x) & =\frac{d}{d x}(x+C)=1=f(x)
\end{aligned}
$$

we see that F, G, and H are indeed antiderivatives of f.

Theorem 1

Let G be an antiderivative of a function f.
Then, every antiderivative F of f must be of the form

$$
F(x)=G(x)+C
$$

where C is a constant.

Example 3

Prove that the function $G(x)=x^{2}$ is an antiderivative of the function $f(x)=2 x$. Write a general expression for the antiderivatives of f.

Solution:
Since $G^{\prime}(x)=2 x=f(x)$, we have shown that $G(x)=x^{2}$ is an antiderivative of $f(x)=2 x$.

By Theorem 1, every antiderivative of the function $f(x)=2 x$ has the form $F(x)=x^{2}+C$, where C is a constant.

The Indefinite Integral

The process of finding all the antiderivatives of a function is called antidifferentiation or integration.

We use the symbol \int, called an integral sign, to indicate that the operation of integration is to be performed on some function f.

Thus,

$$
\int 1 d x=x+C \quad \text { and } \quad \int 2 x d x=x^{2}+K
$$

where C and K are arbitrary constants.

Basic Integration Rules

Rule 1: The Indefinite Integral of a Constant

$$
\int k d x=k x+C \quad(k, \text { a constant })
$$

Example 4

Find each of the following indefinite integrals:

$$
\begin{array}{ll}
\text { a. } \int 2 d x & \text { b. } \int \pi^{2} d x
\end{array}
$$

Solution:
Each of the integrals had the form $f(x)=k$, where k is a constant.

Applying Rule 1 in each case yields:
a. $\int 2 d x=2 x+C$
b. $\int \pi^{2} d x=\pi^{2} x+C$

Basic Integration Rules

From the rule of differentiation,

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

we obtain the following rule of integration:

Rule 2: The Power Rule

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1)
$$

Example 5(a)

Find the indefinite integral: $\int x^{3} d x$

Solution:

$$
\int x^{3} d x=\frac{1}{4} x^{4}+C
$$

Example 5(b)

Find the indefinite integral: $\int x^{3 / 2} d x$

Solution:

$$
\begin{aligned}
\int x^{3 / 2} d x & =\frac{1}{\frac{5}{2}} x^{5 / 2}+C \\
& =\frac{2}{5} x^{5 / 2}+C
\end{aligned}
$$

Example 5(c)

Find the indefinite integral: $\int \frac{1}{x^{3 / 2}} d x$

Solution:

$$
\begin{aligned}
\int \frac{1}{x^{3 / 2}} d x & =\int x^{-3 / 2} d x \\
& =\frac{1}{-\frac{1}{2}} x^{-1 / 2}+C \\
& =-2 x^{-1 / 2}+C \\
& =-\frac{2}{x^{1 / 2}}+C
\end{aligned}
$$

Basic Integration Rules

Rule 3: The Indefinite Integral of a Constant Multiple of a Function

$$
\int c f(x) d x=c \int f(x) d x
$$

where c is a constant.

Example 6(a)

Find the indefinite integral: $\int 2 t^{3} d t$
Solution:

$$
\begin{aligned}
\int 2 t^{3} d t & =2 \int t^{3} d t \\
& =2\left(\frac{1}{4} t^{4}+K\right) \\
& =\frac{1}{2} t^{4}+2 K \\
& =\frac{1}{2} t^{4}+C
\end{aligned}
$$

Example 6(b)

Find the indefinite integral: $\int-3 x^{-2} d x$
Solution:

$$
\begin{aligned}
\int-3 x^{-2} d x & =-3 \int x^{-2} d x \\
& =-3(-1) x^{-1}+C \\
& =\frac{3}{x}+C
\end{aligned}
$$

Basic Integration Rules

Rule 4: The Sum Rule

$$
\begin{aligned}
& \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x \\
& \int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x
\end{aligned}
$$

Example 7

Find the indefinite integral: $\int\left(3 x^{5}+4 x^{3 / 2}-2 x^{-1 / 2}\right) d x$

Solution:

$$
\begin{aligned}
\int\left(3 x^{5}+4 x^{3 / 2}-2 x^{-1 / 2}\right) d x & =\int 3 x^{5} d x+\int 4 x^{3 / 2} d x-\int 2 x^{-1 / 2} d x \\
& =3 \int x^{5} d x+4 \int x^{3 / 2} d x-2 \int x^{-1 / 2} d x \\
& =3\left(\frac{1}{6}\right) x^{6}+4\left(\frac{2}{5}\right) x^{5 / 2}-2(2) x^{1 / 2}+C \\
& =\frac{1}{2} x^{6}+\frac{8}{5} x^{5 / 2}-4 x^{1 / 2}+C
\end{aligned}
$$

Basic Integration Rules

Rule 5: The Indefinite Integral of the Exponential Function

$$
\int e^{x} d x=e^{x}+C
$$

Example 8

Find the indefinite integral: $\int\left(2 e^{x}-x^{3}\right) d x$

Solution:

$$
\begin{aligned}
\int\left(2 e^{x}-x^{3}\right) d x & =\int 2 e^{x} d x-\int x^{3} d x \\
& =2 \int e^{x} d x-\int x^{3} d x \\
& =2 e^{x}-\frac{1}{4} x^{4}+C
\end{aligned}
$$

Basic Integration Rules

Rule 6: The Indefinite Integral of the Function $f(x)=x^{-1}$

$$
\int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+C \quad(x \neq 0)
$$

Example 9

Find the indefinite integral: $\int\left(2 x+\frac{3}{x}+\frac{4}{x^{2}}\right) d x$
Solution:

$$
\begin{aligned}
\int\left(2 x+\frac{3}{x}+\frac{4}{x^{2}}\right) d x & =\int 2 x d x+\int \frac{3}{x} d x+\int \frac{4}{x^{2}} d x \\
& =2 \int x d x+3 \int \frac{1}{x} d x+4 \int x^{-2} d x \\
& =2\left(\frac{1}{2}\right) x^{2}+3 \ln |x|+4(-1) x^{-1}+C \\
& =x^{2}+3 \ln |x|-\frac{4}{x}+C
\end{aligned}
$$

Differential Equations

Given the derivative of a function, f^{\prime}, can we find the function f ? Consider the function $f^{\prime}(x)=2 x-1$ from which we want to find $f(x)$.

We can find f by integrating the equation:

$$
\int f^{\prime}(x) d x=\int(2 x-1) d x=x^{2}-x+C
$$

where C is an arbitrary constant.

Thus, infinitely many functions have the derivative f^{\prime}, each differing from the other by a constant.

Differential Equations

Equation $f^{\prime}(x)=2 x-1$ is called a differential equation.

In general, a differential equation involves the derivative of an unknown function.

A solution of a differential equation is any function that satisfies the differential equation.

For the case of $f^{\prime}(x)=2 x-1$, we find that $f(x)=x^{2}-x+C$ gives all the solutions of the differential equation, and it is therefore called the general solution of the differential equation.

Differential Equations

Different values of C yield different functions $f(x)$.

But all these functions have the same slope for any given value of x.

For example, for any value of C, we always find that $f^{\prime}(1)=1$.

Differential Equations

It is possible to obtain a particular solution by specifying the value the function must assume for a given value of x.

For example, suppose we know the function f must pass through the point $(1,2)$, which means $f(1)=2$.

Using this condition on the general solution we can find the value of C :

$$
\begin{aligned}
f(1)=1^{2}-1+C & =2 \\
C & =2
\end{aligned}
$$

Thus, the particular solution is

$$
f(x)=x^{2}-x+2
$$

Differential Equations

Here is the graph of the particular solution of f when $C=2$.

Note that this graph does go through the point (1, 2).

Initial Value Problems

The problem we just discussed is of a type called initial value problem.

In this type of problem we are required to find a function satisfying

1. A differential equation.
2. One or more initial conditions.

Example 10

Find the function f if it is known that

$$
f^{\prime}(x)=3 x^{2}-4 x+8 \quad \text { and } \quad f(1)=9
$$

Solution:
Integrating the function f^{\prime}, we find

$$
\begin{aligned}
f(x) & =\int f^{\prime}(x) d x \\
& =\int\left(3 x^{2}-4 x+8\right) d x \\
& =x^{3}-2 x^{2}+8 x+C
\end{aligned}
$$

Example 10 - Solution

Using the condition $f(1)=9$, we have

$$
\begin{aligned}
f(x) & =x^{3}-2 x^{2}+8 x+C \\
9 & =f(1)=(1)^{3}-2(1)^{2}+8(1)+C \\
9 & =7+C \\
C & =2
\end{aligned}
$$

Therefore, the required function f is

$$
f(x)=x^{3}-2 x^{2}+8 x+2
$$

Applied Example 11 - Velocity of Maglev

In a test run of a maglev, data obtained from reading its speedometer indicate that the velocity of the maglev at time t can be described by the velocity function

$$
v(t)=8 t \quad(0 \leq t \leq 30)
$$

Find the position function of the maglev. Assume that initially the maglev is located at the origin of a coordinate line.

Applied Example 11 - Solution

Let $s(t)$ denote the position of the maglev at any given time $t(0 \leq t \leq 30)$. Then, $s^{\prime}(t)=v(t)$.

So, we have the initial value problem

$$
\left.\begin{array}{l}
s^{\prime}(t)=8 t \\
s(0)=0
\end{array}\right\}
$$

Integrating the function s^{\prime}, we find

$$
\begin{aligned}
s(t) & =\int s^{\prime}(t) d t \\
& =\int 8 t d t \\
& =4 t^{2}+C
\end{aligned}
$$

Applied Example 11 - Solution

Using the condition $s(0)=0$, we have

$$
\begin{aligned}
s(t) & =4 t^{2}+C \\
0 & =s(0)=4(0)+C \\
0 & =0+C \\
C & =0
\end{aligned}
$$

Therefore, the required function s is

$$
s(t)=4 t^{2} \quad(0 \leq t \leq 30)
$$

