INTEGRATION

Copyright © Cengage Learning. All rights reserved.

6.3

Area and the Definite Integral

The Area Under the Graph of a Function

Let f be a nonnegative continuous function on $[a, b]$. Then, the area of the region under the graph of f is

$$
A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right] \Delta x
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary points in the n subintervals of $[a, b]$ of equal width $\Delta x=(b-a) / n$.

The Definite Integral

Let f be a continuous function defined on $[a, b]$. If

$$
\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]
$$

exists for all choices of representative points $x_{1}, x_{2}, \ldots, x_{n}$ in the n subintervals of $[a, b]$ of equal width $\Delta x=(b-a) / n$, then the limit is called the definite integral of f from a to b and is denoted by

$$
\int_{a}^{b} f(x) d x
$$

Thus,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]
$$

The number a is the lower limit of integration, and the number b is the upper limit of integration.

Integrability of a Function

Let f be a continuous on $[a, b]$. Then, f is integrable on $[a, b]$; that is, the definite integral

$$
\int_{a}^{b} f(x) d x
$$

exists.

Geometric Interpretation of the Definite Integral

If f is nonnegative and integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x
$$

is equal to the area of the region under the graph of f on $[a, b]$.

Geometric Interpretation of the Definite Integral

The definite integral is equal to the area of the region under the graph of f on $[a, b]$:

Geometric Interpretation of the Definite Integral

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x
$$

is equal to the area of the region above $[a, b]$ minus the region below $[a, b]$.

Geometric Interpretation of the Definite Integral

The definite integral is equal to the area of the region above $[a, b]$ minus the region below $[a, b]$:

