6

INTEGRATION

Copyright © Cengage Learning. All rights reserved.

6.4 The Fundamental Theorem of Calculus

Copyright © Cengage Learning. All rights reserved.

Theorem 2: The Fundamental Theorem of Calculus

Let *f* be continuous on [*a*, *b*]. Then,

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where *F* is any antiderivative of *f*; that is, F'(x) = f(x).

Example 1

Let *R* be the region under the graph of f(x) = x on the interval [1, 3]. Use the fundamental theorem of calculus to find the area *A* of *R* and verify your result by elementary means.

Example 1 – Solution

The graph shows the region to be evaluated. Since f is nonnegative on [1, 3], the area of R is given by the definite integral of f from 1 to 3.

Example 1 – Solution

By the fundamental theorem of calculus, we have

$$A = \int_{1}^{3} x dx = \frac{1}{2} x^{2} + C \Big|_{1}^{3}$$
$$= \left(\frac{9}{2} + C\right) - \left(\frac{1}{2} + C\right)$$
$$= 4$$

Thus, the area A of region R is 4 square units.

Note that the constant of integration *C* dropped out. This is true in general. cont'd

Example 1 – Solution

Using elementary means, note that area *A* is equal to R_1 (base × height) plus R_2 ($\frac{1}{2}$ × base × height).

cont'd

Example 3

Find the area of the region under the graph of $y = x^2 + 1$ from x = -1 to x = 2.

Solution: Note below that the full region *R* under consideration lies above the *x* axis.

Example 3 – Solution

cont'd

Using the fundamental theorem of calculus, we find that the required area is

$$\int_{-1}^{2} (x^{2} + 1) dx = \left(\frac{1}{3}x^{3} + x\right)\Big|_{-1}^{2}$$
$$= \left[\frac{1}{3}(2)^{3} + (2)\right] - \left[\frac{1}{3}(-1)^{3} + (-1)\right]$$
$$= \frac{8}{3} + 2 + \frac{1}{3} + 1$$
$$= 6$$

Net Change Formula

The net change in a function *f* over an interval [*a*, *b*] is given by

 $f(b) - f(a) = \int_{a}^{b} f'(x) dx$

provided f' is continuous on [a, b].

Applied Example 6 – *Population Growth in Clark County*

Clark County, Nevada, (dominated by Las Vegas) is the fastest growing metropolitan area in the United States. From 1970 through 2000, the population was growing at a rate of

 $R(t) = 133,680t^2 - 178,788t + 234,633 \qquad (0 \le t \le 3)$

people per decade, where t = 0 corresponds to the beginning of 1970. What was the pet change in population over the dec

What was the net change in population over the decade from 1980 to 1990?

Applied Example 6 – Solution

The net change in population over the decade from 1980 to 1990 is given by P(2) - P(1), where *P* denotes the population in the county at time *t*. But P' = R, and so the net change in population is

$$P(2) - P(1) = \int_{1}^{2} P'(t)dt = \int_{1}^{2} R(t)dt$$

= $\int_{1}^{2} (133,680t^{2} - 178,788t + 234,633)dt$
= $44,560t^{3} - 89,394t^{2} + 234,633t\Big|_{1}^{2}$
= $[44,560(2)^{3} - 89,394(2)^{2} + 234,633(2)]$
- $[44,560(1)^{3} - 89,394(1)^{2} + 23,4633(1)]$

Applied Example 8 – Assembly Time of Workers

An efficiency study conducted for Elektra Electronics showed that the rate at which Space Commander walkietalkies are assembled by the average worker *t* hours after starting work at 8:00 a.m. is given by the function

 $f(t) = -3t^2 + 12t + 15 \qquad (0 \le t \le 4)$

Determine how many walkie-talkies can be assembled by the average worker in the first hour of the morning shift.

Applied Example 8 – Solution

Let N(t) denote the number of walkie-talkies assembled by the average worker *t* hours after starting work in the morning shift. Then, we have

 $N'(t) = f(t) = -3t^2 + 12t + 15$

Therefore, the number of units assembled by the average worker in the first hour of the morning shift is

 $N(1) - N(0) = \int_0^1 N'(t)dt = \int_0^1 (-3t^2 + 12t + 15)dt$ $= (-t^3 + 6t^2 + 15t)\Big|_0^1 = -1 + 6 + 15$ = 20

or 20 units.