6

INTEGRATION

Copyright © Cengage Learning. All rights reserved.

6.5 Evaluating Definite Integrals

Properties of the Definite Integral

Let f and g be integrable functions, then

$$1. \int_a^a f(x) dx = 0$$

2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

3.
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx \qquad (c, a \text{ constant})$$

4.
$$\int_a^b \left[f(x) \pm g(x) \right] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 $(a < c < b)$

Example 1 – Using the Method of Substitution

Evaluate
$$\int_0^4 x \sqrt{9 + x^2} dx$$

Solution:

First, find the indefinite integral: $I = \int x\sqrt{9 + x^2} dx$

1. Let $u = 9 + x^2$ so that

$$du = \frac{d}{dx}(9 + x^2)dx$$
$$= 2xdx$$
$$xdx = \frac{1}{2}du$$

cont'd

Example 1 – Solution

2. Then, integrate by substitution using $xdx = \frac{1}{2}du$:

$$I = \int x\sqrt{9 + x^2} dx$$

$$= \int \frac{1}{2} \sqrt{u} du$$

$$= \frac{1}{2} \int u^{1/2} du$$

$$= \frac{1}{3} u^{3/2} + C$$

$$= \frac{1}{3} (9 + x^2)^{3/2} + C$$

Example 1 – Solution

Using the results, we evaluate the definite integral:

$$\int_0^4 x\sqrt{9+x^2} dx = \frac{1}{3}(9+x^2)^{3/2} \Big|_0^4$$

$$= \frac{1}{3}[(9+(4)^2)^{3/2} - (9+(0)^2)^{3/2}]$$

$$= \frac{1}{3}(125-27)$$

$$= \frac{98}{3}$$

$$= 32\frac{2}{3}$$

Example 3 – Using the Method of Substitution

Evaluate
$$\int_0^1 \frac{x^2}{x^3 + 1} dx$$

Solution:

Let $u = x^3 + 1$ so that

$$du = \frac{d}{dx}(x^3 + 1)dx$$
$$= 3x^2 dx$$
$$\frac{1}{3}du = x^2 dx$$

Find the lower and upper limits of integration with respect to *u*:

- When x = 0, the lower limit is $u = (0)^3 + 1 = 1$.
- When x = 1, the upper limit is $u = (1)^3 + 1 = 2$.

Substitute $x^2 dx = \frac{1}{3} du$, along with the limits of integration:

$$\int_0^1 \frac{x^2}{x^3 + 1} dx = \int_0^1 \frac{1}{x^3 + 1} \cdot x^2 dx = \int_1^2 \frac{1}{u} \cdot \frac{1}{3} du = \frac{1}{3} \int_1^2 \frac{1}{u} du$$

$$= \frac{1}{3} \ln |u|_{1}^{2} = \frac{1}{3} (\ln 2 - \ln 1) = \frac{1}{3} \ln 2$$

Example 4 – Using the Method of Substitution

Find the area of the region R under the graph of $f(x) = e^{(1/2)x}$ from x = -1 to x = 1.

Solution:

The graph shows region R:

Example 4 – Solution

Since f(x) is always greater than zero, the area is given by

$$A = \int_{-1}^{1} e^{(1/2)x} dx$$

To evaluate this integral, we substitute

$$u = \frac{1}{2}x$$

so that

$$du = \frac{1}{2}dx$$

$$2du = dx$$

Example 4 – Solution

When
$$x = -1$$
, $u = -\frac{1}{2}$, and when $x = 1$, $u = \frac{1}{2}$.

Substitute dx = 2du, along with the limits of integration:

$$A = \int_{-1}^{1} e^{(1/2)x} dx = \int_{-1/2}^{1/2} e^{u} \cdot 2du$$

$$= 2 \int_{-1/2}^{1/2} e^{u} du$$

$$= 2 e^{u} \Big|_{-1/2}^{1/2}$$

$$= 2 (e^{1/2} - e^{-1/2}) \approx 2.08$$

or approximately 2.08 square units.

Average Value of a Function

Suppose *f* is integrable on [*a*, *b*]. Then, the average value of *f* over [*a*, *b*] is

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Applied Example 6 – Automobile Financing

The interest rates changed by Madison Finance on auto loans for used cars over a certain 6-month period in 2008 are approximated by the function

$$r(t) = -\frac{1}{12}t^3 + \frac{7}{8}t^2 - 3t + 12 \qquad (0 \le t \le 6)$$

where t is measured in months and r(t) is the annual percentage rate.

What is the average rate on auto loans extended by Madison over the 6-month period?

Applied Example 6 – Solution

The average rate over the 6-month period is given by

$$\frac{1}{6-0} \int_0^6 \left(-\frac{1}{12} t^3 + \frac{7}{8} t^2 - 3t + 12 \right) dx$$

$$= \frac{1}{6} \left(-\frac{1}{48}t^4 + \frac{7}{24}t^3 - \frac{3}{2}t^2 + 12t \right) \Big|_{0}^{6}$$

$$= \frac{1}{6} \left(-\frac{1}{48} (6)^4 + \frac{7}{24} (6)^3 - \frac{3}{2} (6)^2 + 12(6) \right)$$

$$= 9$$

or 9% per year.