INTEGRATION

Copyright © Cengage Learning. All rights reserved.
6.6

Area Between Two Curves

The Area Between Two Curves

Let f and g be continuous functions such that $f(x) \geq g(x)$ on the interval $[a, b]$.
Then, the area of the region bounded above by $y=f(x)$ and below by $y=g(x)$ on $[a, b]$ is given by

$$
\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 1

Find the area of the region bounded by the x-axis, the graph of $y=-x^{2}+4 x-8$, and the lines $x=-1$ and $x=4$.

Solution:

The region R is being bounded above by the graph $f(x)=0$ and below by the graph of $g(x)=y=-x^{2}+4 x-8$ on $[-1,4]$:

Example 1 - Solution

Therefore, the area of R is given by

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{-1}^{4}\left[0-\left(-x^{2}+4 x-8\right)\right] d x \\
& =\int_{-1}^{4}\left(x^{2}-4 x+8\right) d x \\
& =\frac{1}{3} x^{3}-2 x^{2}+\left.8 x\right|_{-1} ^{4} \\
& =\left[\frac{1}{3}(4)^{3}-2(4)^{2}+8(4)\right]-\left[\frac{1}{3}(-1)^{3}-2(-1)^{2}+8(-1)\right] \\
& =31 \frac{2}{3}
\end{aligned}
$$

Example 2

Find the area of the region bounded by $f(x)=2 x-1$, $g(x)=x^{2}-4, x=1$, and $x=2$.

Solution:
Note that the graph of f always lies above that of g for all x in the interval [1, 2]:

Example 2 - Solution

Since the graph of f always lies above that of g for all x in the interval $[1,2]$, the required area is given by

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{1}^{2}\left[(2 x-1)-\left(x^{2}-4\right)\right] d x \\
& =\int_{1}^{2}\left(-x^{2}+2 x+3\right) d x=-\frac{1}{3} x^{3}+x^{2}+\left.3 x\right|_{1} ^{2} \\
& =\left(-\frac{1}{3}(2)^{3}+(2)^{2}+3(2)\right)-\left(-\frac{1}{3}(1)^{3}+(1)^{2}+3(1)\right) \\
& =\frac{11}{3}
\end{aligned}
$$

Example 3

Find the area of the region that is completely enclosed by the graphs of $f(x)=2 x-1$ and $g(x)=x^{2}-4$.

Solution:

First, find the points of intersection of the two curves.
To do this, you can set $g(x)=f(x)$ and solve for x :

$$
\begin{aligned}
x^{2}-4 & =2 x-1 \\
x^{2}-2 x-3 & =0 \\
(x+1)(x-3) & =0
\end{aligned}
$$

so, the graphs intersect at $x=-1$ and at $x=3$.

Example 3 - Solution

The graph of f always lies above that of g for all x in the interval $[-1,3]$ between the two intersection points:

Example 3 - Solution

Since the graph of f always lies above that of g for all x in the interval $[-1,3]$, the required area is given by

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{-1}^{3}\left[(2 x-1)-\left(x^{2}-4\right)\right] d x \\
& =\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x=-\frac{1}{3} x^{3}+x^{2}+\left.3 x\right|_{-1} ^{3} \\
& =\left(-\frac{1}{3}(3)^{3}+(3)^{2}+3(3)\right)-\left(-\frac{1}{3}(-1)^{3}+(-1)^{2}+3(-1)\right) \\
& =10 \frac{2}{3}
\end{aligned}
$$

Example 4

Find the area of the region bounded by $f(x)=x^{2}-2 x-1, g(x)$ $=-\mathrm{e}^{x}-1, \quad x=-1$, and $x=1$.

Solution:

Note that the graph of f always lies above that of g for all x in the interval [-1, 1]:

Example 4 - Solution

Since the graph of f always lies above that of g for all x in the interval $[-1,1]$, the required area is given by

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{-1}^{1}\left[\left(x^{2}-2 x-1\right)-\left(-e^{x}-1\right)\right] d x \\
& =\int_{-1}^{1}\left(x^{2}-2 x+e^{x}\right) d x=\frac{1}{3} x^{3}-x^{2}+\left.e^{x}\right|_{-1} ^{1} \\
& =\left(\frac{1}{3}(1)^{3}-(1)^{2}+e^{(1)}\right)-\left(\frac{1}{3}(-1)^{3}-(-1)^{2}+e^{(-1)}\right) \\
& =\frac{2}{3}+e-\frac{1}{e} \approx 3.02
\end{aligned}
$$

Example 5

Find the area of the region bounded by $f(x)=x^{3}$, the x-axis, $x=-1$, and $x=1$.

Solution:

The region being considered is composed of two subregions R_{1} and R_{2} :

Example 5 - Solution

To find R_{1} and R_{2} consider the x-axis as $g(x)=0$.
Since $g(x) \geq f(x)$ on $[-1,0]$, the area of R_{1} is given by

$$
\begin{aligned}
R_{1} & =\int_{a}^{b}[g(x)-f(x)] d x \\
& =\int_{-1}^{0}\left(0-x^{3}\right) d x=-\int_{-1}^{0} x^{3} d x \\
& =-\left.\frac{1}{4} x^{4}\right|_{-1} ^{0}=0-\left(-\frac{1}{4}\right)=\frac{1}{4}
\end{aligned}
$$

Example 5 - Solution

To find R_{1} and R_{2} consider the x-axis as $g(x)=0$.
Since $g(x) \leq f(x)$ on $[0,1]$, the area of R_{2} is given by

$$
\begin{aligned}
R_{2} & =\int_{a}^{b}[f(x)-g(x)] d x \\
& =\int_{0}^{1}\left(x^{3}-0\right) d x=\int_{0}^{1} x^{3} d x \\
& =\left.\frac{1}{4} x^{4}\right|_{0} ^{1}=\left(\frac{1}{4}\right)-0=\frac{1}{4}
\end{aligned}
$$

Example 5 - Solution

Therefore, the required area R is

$$
R=R_{1}+R_{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

square units.

Example 6

Find the area of the region bounded by $f(x)=x^{3}-3 x+3$ and $g(x)=x+3$.

Solution:
The region R being considered is composed of two subregions R_{1} and R_{2} :

Example 6 - Solution

To find the points of intersection, we solve simultaneously the equations $y=x^{3}-3 x+3$ and $y=x+3$.

$$
\begin{aligned}
x^{3}-3 x+3 & =x+3 \\
x^{3}-4 x & =0 \\
x(x+2)(x-2) & =0
\end{aligned}
$$

So, $x=0, x=-2$, and $x=2$.
The points of intersection of the two curves are $(-2,1)$, $(0,3)$, and $(2,5)$.

Example 6 - Solution

Note that $f(x) \geq g(x)$ for $[-2,0]$, so the area of region R_{1} is given by

$$
\begin{aligned}
R_{1} & =\int_{a}^{b}[f(x)-g(x)] d x \\
& =\int_{-2}^{0}\left[\left(x^{3}-3 x+3\right)-(x+3)\right] d x \\
& =\int_{-2}^{0}\left(x^{3}-4 x\right) d x \\
& =\frac{1}{4} x^{4}-\left.2 x^{2}\right|_{-2} ^{0} \\
& =-(4-8)=4
\end{aligned}
$$

Example 6 - Solution

Note that $g(x) \geq f(x)$ for $[0,2]$, so the area of region R_{2} is given by

$$
\begin{aligned}
R_{2} & =\int_{a}^{b}[g(x)-f(x)] d x \\
& =\int_{0}^{2}\left[(x+3)-\left(x^{3}-3 x+3\right)\right] d x \\
& =\int_{0}^{2}\left(-x^{3}+4 x\right) d x \\
& =-\frac{1}{4} x^{4}+\left.2 x^{2}\right|_{0} ^{2} \\
& =-4+8=4
\end{aligned}
$$

Example 6 - Solution

Therefore, the required area R is

$$
R=R_{1}+R_{2}=4+4=8
$$

square units.

