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The Area Between Two Curves

Let f and g be continuous functions such that 
f(x)  g(x) on the interval [a, b]. 
Then, the area of the region bounded above by                
y = f(x) and below by y = g(x) on [a, b] is given by
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Example 1
Find the area of the region bounded by the x-axis, the graph
of y = –x2 + 4x – 8, and the lines x = –1 and x = 4.

Solution:
The region R is being 
bounded above by the 
graph f(x) = 0 and 
below by the graph of 
g(x) = y = –x2 + 4x – 8
on [–1, 4]:
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Example 1 – Solution
Therefore, the area of R is given by
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Example 2
Find the area of the region bounded by f(x) = 2x – 1,  
g(x) = x2 – 4, x = 1, and  x = 2.

Solution:
Note that the graph of f always lies above that of g for all x in 
the interval [1, 2]:
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Example 2 – Solution
Since the graph of f always lies above that of g for all x in the 
interval [1, 2], the required area is given by
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Example 3
Find the area of the region that is completely enclosed by the 
graphs of f(x) = 2x – 1 and   g(x) = x2 – 4.

Solution:
First, find the points of intersection of the two curves.
To do this, you can set g(x) = f(x) and solve for x:

so, the graphs intersect at x = –1 and at x = 3.

( 1)( 3) 0x x  ( 1)( 3) 0x x  

2 4 2 1x x  2 4 2 1x x  

2 2 3 0x x  2 2 3 0x x  
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Example 3 – Solution
The graph of f always lies above that of g for all x in the 
interval [–1, 3] between the two intersection points:
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Example 3 – Solution
Since the graph of f always lies above that of g for all x in the 
interval [–1, 3], the required area is given by

 
3 2

1
( ) ( ) (2 1) ( 4)

b

a
f x g x dx x x dx


        

3 2

1
( ) ( ) (2 1) ( 4)

b

a
f x g x dx x x dx


       

210
3


210
3



3
3 2 3 2

1
1

1( 2 3) 3
3

x x dx x x x




      
3

3 2 3 2

1
1

1( 2 3) 3
3

x x dx x x x




      

3 2 3 21 1(3) (3) 3(3) ( 1) ( 1) 3( 1)
3 3

                
   

3 2 3 21 1(3) (3) 3(3) ( 1) ( 1) 3( 1)
3 3

                
   

cont’d



11

Example 4
Find the area of the region bounded by f(x) = x2 – 2x – 1, g(x) 
= –ex – 1,   x = –1, and  x = 1.

Solution:
Note that the graph of 
f always lies above that 
of g for all x in the 
interval [–1, 1]:
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Example 4 – Solution
Since the graph of f always lies above that of g for all x in the 
interval [–1, 1], the required area is given by
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Example 5
Find the area of the region bounded by f(x) = x3, the x-axis,   
x = –1, and  x = 1.

Solution:
The region being considered is composed of two subregions
R1 and R2:
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Example 5 – Solution
To find R1 and R2 consider the x-axis as g(x) = 0. 

Since g(x)  f(x) on [–1, 0], the area of R1 is given by
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Example 5 – Solution
To find R1 and R2 consider the x-axis as g(x) = 0. 

Since g(x)  f(x) on [0, 1], the area of R2 is given by
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Example 5 – Solution
Therefore, the required area R is 

square units. R1 1
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Find the area of the region bounded by f(x) = x3 – 3x + 3  and  
g(x) = x + 3.

Solution:
The region R being considered is composed of two 
subregions R1 and R2:
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To find the points of intersection, we solve simultaneously
the equations y = x3 – 3x + 3 and y = x + 3.

So, x = 0, x = – 2, and x = 2.

The points of intersection of 
the two curves are (– 2, 1), 
(0, 3), and (2, 5). 

Example 6 – Solution
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Note that f(x)  g(x) for [– 2, 0], so the area of region R1 is 
given by

Example 6 – Solution
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Note that g(x)  f(x) for [0, 2], so the area of region R2 is 
given by

Example 6 – Solution
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Therefore, the required area R is 

square units.

Example 6 – Solution
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