INTEGRATION

Copyright © Cengage Learning. All rights reserved.

6.7

Applications of the Definite Integral to Business and Economics

Consumers' and Producers' Surplus

Suppose $p=D(x)$ is the demand function that relates the price p of a commodity to the quantity x demanded of it.

Now suppose a unit market price \bar{p} has been established, along with a corresponding quantity demanded \bar{x}.

Those consumers who would be willing to pay a unit price higher than \bar{p} for the commodity would in effect experience a savings.

This difference between what the consumer would be willing to pay and what they actually have to pay is called the consumers' surplus.

Consumers' and Producers' Surplus

To derive a formula for computing the consumers' surplus, divide the interval $[0, \bar{x}]$ into n subintervals, each of length $\Delta x=\bar{x} / n$, and denote the right endpoints of these intervals by $x_{1}, x_{2}, \ldots, x_{n}=\bar{x}$:

Consumers' and Producers' Surplus

There are consumers who would pay a price of at least $D\left(x_{1}\right)$ for the first Δx units instead of the market price of \bar{p}.

The savings to these consumers is approximated by

$$
D\left(x_{1}\right) \Delta x-\bar{p} \Delta x=\left[D\left(x_{1}\right)-\bar{p}\right] \Delta x
$$

which is the area of the rectangle r_{1} :

Consumers' and Producers' Surplus

Similarly, the savings the consumer experiences for the consecutive increments of Δx are depicted by the areas of rectangles $r_{2}, r_{3}, r_{4}, \ldots, r_{n}$:

Consumers' and Producers' Surplus

Adding $r_{1}+r_{2}+r_{3}+\ldots+r_{n}$, and letting n approach infinity, we obtain the consumers' surplus CS formula:

$$
C S=\int_{0}^{\bar{x}} D(x) d x-\bar{p} \bar{x}
$$

where $D(x)$ is the demand function, \bar{p} is the unit market price, and is the quantity demanded.

Consumers' and Producers' Surplus

Similarly, we can derive a formula for the producers' surplus. Suppose $p=S(x)$ is the supply function that relates the price p of a commodity to the quantity x supplied of it.

Again, suppose a unit market price \bar{p} has been established, along with a corresponding quantity supplied \bar{x}.

Those sellers who would be willing to sell at unit price lower than \bar{p} for the commodity would in effect experience a gain or profit.

This difference between what the seller would be willing to sell for and what they actually can sell for is called the producers' surplus.

Consumers' and Producers' Surplus

Geometrically, the producers' surplus is given by the area of the region bounded above the straight line $p=\bar{p}$ and below the supply curve $p=\boldsymbol{S}(x)$ from $x=0$ to $x=\bar{x}$:

Consumers' and Producers' Surplus

The producers' surplus PS is given by

$$
P S=\bar{p} \bar{x}-\int_{0}^{\bar{x}} S(x) d x
$$

where $S(x)$ is the supply function, \bar{p} is the unit market price, and \bar{X} is the quantity supplied.

Example 1

The demand function for a certain make of 10-speed bicycle is given by

$$
p=D(x)=-0.001 x^{2}+250
$$

where p is the unit price in dollars and x is the quantity demanded in units of a thousand.

The supply function for these bicycles is given by

$$
p=S(x)=0.0006 x^{2}+.02 x+100
$$

where p stands for the price in dollars and x stands for the number of bicycles that the supplier will want to sell.

Determine the consumers' surplus and the producers' surplus if the market price of a bicycle is set at the equilibrium price.

Example 1 - Solution

To find the equilibrium point, equate $S(x)$ and $D(x)$ to solve the system of equations and find the point of intersection of the demand and supply curves:

$$
\begin{aligned}
0.0006 x^{2}+.02 x+100 & =-0.001 x^{2}+250 \\
0.0016 x^{2}+.02 x-150 & =0 \\
16 x^{2}+200 x-1,500,000 & =0 \\
2 x^{2}+25 x-187,500 & =0 \\
(2 x+625)(x-300) & =0
\end{aligned}
$$

Thus, $x=-625 / 2$ or $x=300$.

Example 1 - Solution

The first number is discarded for being negative, so the solution is $x=300$.

Substitute $x=300$ to find the equilibrium value of p :

$$
p=-0.001(300)^{2}+250=160
$$

Thus, the equilibrium point is $(300,160)$.

That is, the equilibrium quantity is 300,000 bicycles, and the equilibrium price is $\$ 160$ per bicycle.

Example 1 - Solution

To find the consumers' surplus, we set $\bar{x}=300$ and $\bar{p}=160$ in the consumers' surplus formula:

$$
\begin{aligned}
C S & =\int_{0}^{\bar{x}} D(x) d x-\bar{p} \bar{x} \\
& =\int_{0}^{300}\left(-0.001 x^{2}+250\right) d x-(160)(300) \\
& =\left.\left(-\frac{1}{3000} x^{3}+250 x\right)\right|_{0} ^{300}-48,000 \\
& =-\frac{300^{3}}{3000}+250(300)-48,000=18,000
\end{aligned}
$$

or \$18,000,000.

Example 1 - Solution

To find the producers' surplus, we set $\bar{x}=300$ and $\bar{p}=160$ in the producers' surplus formula:

$$
\begin{aligned}
P S & =\bar{p} \bar{x}-\int_{0}^{\bar{x}} S(x) d x \\
& =(160)(300)-\int_{0}^{300}\left(0.0006 x^{2}+0.02 x+100\right) d x \\
& =48,000-\left.\left(0.0002 x^{3}+0.01 x^{2}+100 x\right)\right|_{0} ^{300} \\
& =48,000-\left[0.0002(300)^{3}+0.01(300)^{2}+100(300)\right] \\
& =11,700
\end{aligned}
$$

or \$11,700,000.

Example 1 - Solution

Consumers' surplus and producers' surplus when the market is in equilibrium:

Accumulated or Total Future Value of an Income Stream

The accumulated, or total, future value after T years of an income stream of $R(t)$ dollars per year, earning interest rate of r per year compounded continuously, is given by

$$
A=e^{r T} \int_{0}^{T} R(t) e^{-r t} d t
$$

Applied Example 2 - Income Stream

Crystal Car Wash recently bought an automatic car-washing machine that is expected to generate $\$ 40,000$ in revenue per year, t years from now, for the next 5 years. If the income is reinvested in a business earning interest at the rate of 12% per year compounded continuously, find the total accumulated value of this income stream at the end of 5 years.

Applied Example 2 - Solution

We are required to find the total future value of the given income stream after 5 years.

Setting $R(t)=40,000, r=0.12$, and $T=5$ in the accumulated income stream formula we get

$$
\begin{aligned}
A & =e^{r T} \int_{0}^{T} R(t) e^{-r t} d t=e^{0.12(5)} \int_{0}^{5} 40,000 e^{-0.12 t} d t \\
& =e^{0.6}\left[-\frac{40,000}{0.12} e^{-0.12 t}\right]_{0}^{5} \\
& =-\frac{40,000 e^{0.6}}{0.12}\left(e^{-0.6}-1\right) \approx 274,039.60
\end{aligned}
$$

or approximately $\$ 274,040$.

Present Value of an Income Stream

The present value of an income stream of $R(t)$ dollars in a year, earning interest at the rate of r per year compounded continuously, is given by

$$
P V=\int_{0}^{T} R(t) e^{-r t} d t
$$

Applied Example 2 - Investment Analysis

The owner of a local cinema is considering two alternative plans for renovating and improving the theater.

Plan A calls for an immediate cash outlay of $\$ 250,000$, whereas plan B requires an immediate cash outlay of \$180,000.

It has been estimated that adopting plan A would result in a net income stream generated at the rate of

$$
f(t)=630,000
$$

dollars per year, whereas adopting plan B would result in a net income stream generated at the rate of

$$
g(t)=580,000
$$

for the next three years.

Applied Example 2 - Investment Analysis

If the prevailing interest rate for the next five years is 10% per year, which plan will generate a higher net income by the end of year 3 ?

Solution:
We can find the present value of the net income $N /$ for plan A setting $R(t)=630,000, r=0.1$, and $T=3$, using the present value formula:

$$
\begin{aligned}
N I & =\int_{0}^{T} R(t) e^{-r t} d t-250,000 \\
& =\int_{0}^{3} 630,000 e^{-0.1 t} d t-250,000
\end{aligned}
$$

Applied Example 2 - Solution

$$
\begin{aligned}
& =\left.\frac{630,000}{-0.1} e^{-0.1 t}\right|_{0} ^{3}-250,000 \\
& =-6,300,000 e^{-0.3}+6,300,000-250,000 \\
& \approx 1,382,845
\end{aligned}
$$

or approximately \$1,382,845.
To find the present value of the net income $N /$ for plan B setting $R(t)=580,000, r=0.1$, and $T=3$, using the present value formula:

$$
N I=\int_{0}^{T} R(t) e^{-r t} d t-180,000
$$

Applied Example 2 - Solution

$$
\begin{aligned}
& =\int_{0}^{3} 580,000 e^{-0.1 t} d t-180,000 \\
& =\left.\frac{580,000}{-0.1} e^{-0.1 t}\right|_{0} ^{3}-180,000 \\
& =-5,800,000 e^{-0.3}+5,800,000-180,000 \\
& \approx 1,323,254
\end{aligned}
$$

or approximately $\$ 1,323,254$.
Thus, we conclude that plan A will generate a higher present value of net income by the end of the third year $(\$ 1,382,845)$, than plan B $(\$ 1,323,254)$.

Amount of an Annuity

The amount of an annuity is

$$
A=\frac{m P}{r}\left(e^{r T}-1\right)
$$

where P, r, T, and m are as defined earlier.

Applied Example 4 - IRAs

On January 1, 1990, Marcus Chapman deposited \$2000 into an Individual Retirement Account (IRA) paying interest at the rate of 10\% per year compounded continuously. Assuming that he deposited \$2000 annually into the account, how much did he have in his IRA at the beginning of 2006?

Applied Example 4 - Solution

We set $P=2000, r=0.1, T=16$, and $m=1$ in the amount of annuity formula, obtaining

$$
\begin{aligned}
A=\frac{m P}{r}\left(e^{r T}-1\right) & =\frac{2000}{0.1}\left(e^{1.6}-1\right) \\
& \approx 79,060.65
\end{aligned}
$$

Thus, Marcus had approximately \$79,061 in his account at the beginning of 2006.

Present Value of an Annuity

The present value of an annuity is given by

$$
P V=\frac{m P}{r}\left(1-e^{-r T}\right)
$$

where P, r, T, and m are as defined earlier.

Applied Example 5 - Sinking Funds

Tomas Perez, the proprietor of a hardware store, wants to establish a fund from which he will withdraw $\$ 1000$ per month for the next ten years. If the fund earns interest at a rate of 6% per year compounded continuously, how much money does he need to establish the fund?

Applied Example 5 - Solution

We want to find the present value of an annuity with $P=1000, r=0.06, T=10$, and $m=12$.

Using the present value of an annuity formula, we find

$$
\begin{aligned}
P V=\frac{m P}{r}\left(1-e^{-r T}\right) & =\frac{12,000}{0.06}\left(1-e^{-(0.06)(10)}\right) \\
& \approx 90,237.70
\end{aligned}
$$

Thus, Tomas needs approximately \$90,238 to establish the fund.

