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Consumers’ and Producers’ Surplus

Suppose p = D(x) is the demand function that relates the 
price p of a commodity to the quantity x demanded of it.

Now suppose a unit market pricep has been established, 
along with a corresponding quantity demandedx.

Those consumers who would be willing to pay a unit price 
higher thanp for the commodity would in effect experience a 
savings.

This difference between what the consumer would be willing
to pay and what they actually have to pay is called the 
consumers’ surplus.



4

To derive a formula for computing the consumers’ surplus, 
divide the interval [0,   ] into n subintervals, each of length 
x = /n, and denote the right endpoints of these intervals by 
x1, x2, …, xn =   :
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There are consumers who would pay a price of at least D(x1)
for the first x units instead of the market price of    .

The savings to these consumers is approximated by

which is the area of the rectangle r1:
1 1( ) [ ( ) ]D x x p x D x p x     1 1( ) [ ( ) ]D x x p x D x p x     
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Similarly, the savings the consumer experiences for the 
consecutive increments of x are depicted by the areas of 
rectangles r2, r3, r4, … , rn: 
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Adding r1 + r2 + r3 + … + rn, and letting n approach infinity, 
we obtain the consumers’ surplus CS formula:

where D(x) is the demand function, is the unit market price, 
and is the quantity demanded.
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Similarly, we can derive a formula for the producers’ surplus. 
Suppose p = S(x) is the supply function that relates the price
p of a commodity to the quantity x supplied of it.

Again, suppose a unit market price has been established, 
along with a corresponding quantity supplied .

Those sellers who would be willing to sell at unit price lower
than for the commodity would in effect experience a gain 
or profit.

This difference between what the seller would be willing to 
sell for and what they actually can sell for is called the 
producers’ surplus.
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Geometrically, the producers’ surplus is given by the area 
of the region bounded above the straight line p =    and  
below the supply curve p = S(x) from x = 0 to x = : 
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The producers’ surplus PS is given by

where S(x) is the supply function, is the unit market price, 
and is the quantity supplied.
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Example 1
The demand function for a certain make of 10-speed bicycle
is given by

where p is the unit price in dollars and x is the quantity 
demanded in units of a thousand.

The supply function for these bicycles is given by

where p stands for the price in dollars and x stands for the 
number of bicycles that the supplier will want to sell.

Determine the consumers’ surplus and the producers’ 
surplus if the market price of a bicycle is set at the 
equilibrium price.

2( ) 0.001 250p D x x   2( ) 0.001 250p D x x   

2( ) 0.0006 .02 100p S x x x   2( ) 0.0006 .02 100p S x x x   
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To find the equilibrium point, equate S(x) and D(x) to solve 
the system of equations and find the point of intersection of   
the demand and supply curves:

Thus, x = –625/2 or x = 300. 

2 20.0006 .02 100 0.001 250x x x    2 20.0006 .02 100 0.001 250x x x    

216 200 1,500,000 0x x  216 200 1,500,000 0x x  

(2 625)( 300) 0x x  (2 625)( 300) 0x x  

Example 1 – Solution

20.0016 .02 150 0x x  20.0016 .02 150 0x x  

22 25 187,500 0x x  22 25 187,500 0x x  
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The first number is discarded for being negative, so the 
solution is x = 300.

Substitute x = 300 to find the equilibrium value of p:

Thus, the equilibrium point is (300, 160). 

That is, the equilibrium quantity is 300,000 bicycles, and the 
equilibrium price is $160 per bicycle.

20.001(300) 250 160p    20.001(300) 250 160p    

Example 1 – Solution cont’d
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To find the consumers’ surplus, we set = 300 and
= 160 in the consumers’ surplus formula:

or $18,000,000.

300 2

0
( 0.001 250) (160)(300)x dx   

300 2

0
( 0.001 250) (160)(300)x dx   

300
3

0

1 250 48,000
3000

x x     
 

300
3

0

1 250 48,000
3000

x x     
 

3300 250(300) 48,000
3000

   
3300 250(300) 48,000

3000
   

0
( )

x
CS D x dx p x 0 ( )

x
CS D x dx p x 

Example 1 – Solution cont’d

18,00018,000

x
p
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To find the producers’ surplus, we set = 300 and
= 160 in the producers’ surplus formula:

or $11,700,000.

300 2

0
(160)(300) (0.0006 0.02 100)x x dx   

300 2

0
(160)(300) (0.0006 0.02 100)x x dx   

3003 2

0
48,000 (0.0002 0.01 100 )x x x   

3003 2

0
48,000 (0.0002 0.01 100 )x x x   

3 248,000 [0.0002(300) 0.01(300) 100(300)]   3 248,000 [0.0002(300) 0.01(300) 100(300)]   

0
( ) x

PS p x S x dx  0 ( ) x
PS p x S x dx  

Example 1 – Solution

11,70011,700

cont’d

x
p
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Consumers’ surplus and producers’ surplus when the market 
is in equilibrium:
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2( ) 0.001 250p D x x   2( ) 0.001 250p D x x   

2( ) 0.0006 .02 100p S x x x   2( ) 0.0006 .02 100p S x x x   

p =p = 160

Example 1 – Solution cont’d
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Accumulated or Total Future Value of an Income Stream

The accumulated, or total, future value after T years of 
an income stream of R(t) dollars per year, earning 
interest rate of r per year compounded continuously, is 
given by

0
( )

TrT rtA e R t e dt 0 ( )
TrT rtA e R t e dt 
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Applied Example 2 – Income Stream

Crystal Car Wash recently bought an automatic car-washing 
machine that is expected to generate $40,000 in revenue per 
year, t years from now, for the next 5 years. If the income is 
reinvested in a business earning interest at the rate of 12%
per year compounded continuously, find the total 
accumulated value of this income stream at the end of 
5 years.
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We are required to find the total future value of the given 
income stream after 5 years.

Setting R(t) = 40,000, r = 0.12, and T = 5 in the accumulated 
income stream formula we get

or approximately $274,040.

0
( )

TrT rtA e R t e dt 0 ( )
TrT rtA e R t e dt 

50.12(5) 0.12

0
40,000 te e dt 

50.12(5) 0.12

0
40,000 te e dt 

5
0.6 0.12

0

40,000
0.12

te e    

5
0.6 0.12

0

40,000
0.12

te e    

0.6
0.640,000 ( 1)

0.12
e e  

0.6
0.640,000 ( 1)

0.12
e e  

Applied Example 2 – Solution

274,039.60 274,039.60
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Present Value of an Income Stream

The present value of an income stream of R(t) dollars 
in a year, earning interest at the rate of r per year 
compounded continuously, is given by

0
( )

T rtPV R t e dt 0 ( )
T rtPV R t e dt 
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Applied Example 2 – Investment Analysis

The owner of a local cinema is considering two alternative 
plans for renovating and improving the theater. 

Plan A calls for an immediate cash outlay of $250,000, 
whereas plan B requires an immediate cash outlay of 
$180,000.

It has been estimated that adopting plan A would result in a 
net income stream generated at the rate of 

f(t) = 630,000
dollars per year, whereas adopting plan B would result in a 
net income stream generated at the rate of 

g(t) = 580,000
for the next three years.
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If the prevailing interest rate for the next five years is 10%
per year, which plan will generate a higher net income by the 
end of year 3?

Solution:
We can find the present value of the net income NI for plan A
setting R(t) = 630,000, r = 0.1, and T = 3, using the present 
value formula:

Applied Example 2 – Investment Analysis

0
( ) 250,000

T rtNI R t e dt 0 ( ) 250,000
T rtNI R t e dt 

3 0.1

0
630,000 250,000te dt 

3 0.1

0
630,000 250,000te dt 

cont’d
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or approximately $1,382,845.

To find the present value of the net income NI for plan B
setting R(t) = 580,000, r = 0.1, and T = 3, using the present 
value formula:

0.36,300,000 6,300,000 250,000e   0.36,300,000 6,300,000 250,000e   

Applied Example 2 – Solution
3

0.1

0

630,000 250,000
0.1

te 


3
0.1

0

630,000 250,000
0.1

te 


1,382,8451,382,845

0
( ) 180,000

T rtNI R t e dt 0 ( ) 180,000
T rtNI R t e dt 

cont’d
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or approximately $1,323,254. 

Thus, we conclude that plan A will generate a higher present 
value of net income by the end of the third year ($1,382,845), 
than plan B ($1,323,254).

3 0.1

0
580,000 180,000te dt 

3 0.1

0
580,000 180,000te dt 

3
0.1

0

580,000 180,000
0.1

te 


3
0.1

0

580,000 180,000
0.1

te 


0.35,800,000 5,800,000 180,000e   0.35,800,000 5,800,000 180,000e   

1,323, 2541,323, 254

Applied Example 2 – Solution cont’d
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Amount of an Annuity

The amount of an annuity is

where P, r, T, and m are as defined earlier.

( 1)rTmPA e
r

 ( 1)rTmPA e
r

 



26

Applied Example 4 – IRAs
On January 1, 1990, Marcus Chapman deposited $2000 into 
an Individual Retirement Account (IRA) paying interest at the 
rate of 10% per year compounded continuously. Assuming 
that he deposited $2000 annually into the account, how 
much did he have in his IRA at the  beginning of 2006?
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We set P = 2000, r = 0.1, T = 16, and m = 1 in the amount of 
annuity formula, obtaining

Thus, Marcus had approximately $79,061 in his account at 
the beginning of 2006.

1.62000( 1) ( 1)
0.1

rTmPA e e
r

   1.62000( 1) ( 1)
0.1

rTmPA e e
r

   

Applied Example 4 – Solution

79,060.65 79,060.65
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Present Value of an Annuity

The present value of an annuity is given by

where P, r, T, and m are as defined earlier.

(1 )rTmPPV e
r

 (1 )rTmPPV e
r

 
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Applied Example 5 – Sinking Funds

Tomas Perez, the proprietor of a hardware store, wants to 
establish a fund from which he will withdraw $1000 per 
month for the next ten years. If the fund earns interest at a 
rate of 6% per year compounded continuously, how much 
money does he need to establish the fund?
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Applied Example 5 – Solution
We want to find the present value of an annuity with                    
P = 1000, r = 0.06, T = 10, and m = 12.

Using the present value of an annuity formula, we find

Thus, Tomas needs approximately $90,238 to establish the 
fund.

(0.06)(10)12,000(1 ) (1 )
0.06

rTmPPV e e
r

     (0.06)(10)12,000(1 ) (1 )
0.06

rTmPPV e e
r

    

90, 237.70 90, 237.70


