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Approximating Definite Integrals
Sometimes, it is necessary to evaluate definite integrals
based on empirical data where there is no algebraic rule
defining the integrand.

Other situations also arise in which an integrable function
has an antiderivative that cannot be found in terms of 
elementary functions.
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Approximating Definite Integrals
Examples of these are

Riemann sums provide us with a good approximation of a 
definite integral, but there are better techniques and formulas, 
called quadrature formulas, that allow a more efficient way of 
computing approximate values of definite integrals.
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The Trapezoidal Rule
Consider the problem of finding the area under the curve of   
f(x) for the interval [a, b]:
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The Trapezoidal Rule
The trapezoidal rule is based on the notion of dividing the 
area to be evaluated into trapezoids that approximate the 
area under the curve:
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The Trapezoidal Rule
The increments x used for each trapezoid are obtained by 
dividing the interval into n equal segments (in our example   
n = 6):
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The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:
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The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:

x
ba

( )f x( )f x

x1

f(x1)

1 2
2

( ) ( )
2

f x f xR x    
1 2

2
( ) ( )

2
f x f xR x    

y

x

f(x2)R2

x2



10

The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:
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The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:
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The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:
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The Trapezoidal Rule
The area of each trapezoid is calculated by multiplying its 
base, x, by its average height:
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The Trapezoidal Rule
Adding the areas R1 through Rn (n = 6 in this case) of the 
trapezoids gives an approximation of the desired area of the 
region R:
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The Trapezoidal Rule
Adding the areas R1 through Rn of the trapezoids yields the 
following rule:

Trapezoidal Rule

0 1 2 1( ) [ ( ) 2 ( ) 2 ( ) ... 2 ( ) ( )]
2

b

n na

xf x dx f x f x f x f x f x


      0 1 2 1( ) [ ( ) 2 ( ) 2 ( ) ... 2 ( ) ( )]
2

b

n na

xf x dx f x f x f x f x f x


     

  where .b ax
n


   where .b ax
n


 



16

Example 1
Approximate the value of            using the trapezoidal rule
with n = 10.
Compare this result with the exact value of the integral.

Solution:
Here, a = 1, b = 2, and n = 10, so

and 
x0 = 1, x1 = 1.1,  x2 = 1.2, x3 = 1.3, … , x9 = 1.9, x10 = 1.10.
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The trapezoidal rule yields

By computing the actual value of the integral we get

Thus the trapezoidal rule with n = 10 yields a result with an 
error of 0.000624 to six decimal places.

ln 2 ln1 ln 2  ln 2 ln1 ln 2  

Example 1– Solution

2 2

11

1 ln dx x
x

2 2

11

1 ln dx x
x

0.693147 0.693147

cont’d

2

1

1 0.1 1 1 1 1 1[1 2 2 2 ... 2 ]
2 1.1 1.2 1.3 1.9 2

                   
        dx

x
2

1

1 0.1 1 1 1 1 1[1 2 2 2 ... 2 ]
2 1.1 1.2 1.3 1.9 2

                   
        dx

x
0.6937710.693771
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Applied Example 2 – Consumers’ Surplus

The demand function for a certain brand of perfume is given 
by

where p is the unit price in dollars and x is the quantity 
demanded each week, measured in ounces.

Find the consumers’ surplus if the market price is set at $60
per ounce.   

2( ) 10,000 0.01p D x x   2( ) 10,000 0.01p D x x  
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When p = 60, we have

or x = 800 since x must be nonnegative.

Next, using the consumers’ surplus formula with = 60
and = 800, we see that the consumers’ surplus is given by

210,000 0.01 60 x210,000 0.01 60 x

800 2

0
10,000 0.01 (60)(800)CS x dx  

800 2

0
10,000 0.01 (60)(800)CS x dx  

Applied Example 2 – Solution

2 640,000x2 640,000x

210,000 0.01 3,600 x210,000 0.01 3,600 x

p
x
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It is not easy to evaluate this definite integral by finding an 
antiderivative of the integrand. But we can, instead, use the 
trapezoidal rule.

We can use the trapezoidal rule with a = 0, b = 800,                    
and n = 10.

and x0 = 0, x1 = 80,  x2 = 160, x3 = 240, … , x9 = 720, x10 = 800.

The trapezoidal rule yields
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10,000 0.01 (60)(800)CS x dx  
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Applied Example 2 – Solution cont’d
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The trapezoidal rule yields

800 2

0
10,000 0.01 (60)(800)CS x dx  

800 2

0
10,000 0.01 (60)(800)CS x dx  

40(100 199.3590 197.4234 194.1546 189.4835
183.3030 175.4537 165.6985
153.6750 138.7948 60)

    
  
  

40(100 199.3590 197.4234 194.1546 189.4835
183.3030 175.4537 165.6985
153.6750 138.7948 60)

    
  
  

Applied Example 2 – Solution

70,293.82 70,293.82

cont’d

2 2

2 2

80 100 2 10,000 (0.01)(80) 2 10,000 (0.01)(160) ...
2

... 2 10,000 (0.01)(720) 10,000 (0.01)(800)

     

        

2 2

2 2

80 100 2 10,000 (0.01)(80) 2 10,000 (0.01)(160) ...
2

... 2 10,000 (0.01)(720) 10,000 (0.01)(800)

     

        
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Therefore, the consumers’ surplus is approximately 

70, 294 48,000, or $22,294

Applied Example 2 – Solution cont’d
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Simpson’s Rule
We’ve seen that the trapezoidal rule approximates the area 
under the curve by adding the areas of trapezoids under the 
curve:
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Simpson’s Rule
The Simpson’s rule improves upon the trapezoidal rule by 
approximating the area under the curve by the area under a 
parabola, rather than a straight line:
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( )f x( )f x

x0 x1 x2
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Simpson’s Rule
Given any three nonlinear points there is a unique parabola
that passes through the given points.
We can approximate the function f(x) on [x0, x2] with a 
quadratic function whose graph contain these three points:

(x0, f(x0))

x

y

( )f x( )f x

x0 x1 x2

(x1, f(x1))

(x2, f(x2))
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Simpson’s Rule
Simpson’s rule approximates the area under the curve of a 
function f(x) using a quadratic function:

Simpson’s rule
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Find an approximation of            using Simpson’s rule
with n = 10.

Solution:
Here, a = 1, b = 2, and n = 10, so

Simpson’s rule yields

2

1

1 dx
x

2

1

1 dx
x

2 1
10

 
  

b ax
n

2 1
10

 
  

b ax
n

2

1

1 0.1[ (1) 4 (1.1) 2 (1.2) 4 (1.3) 2 (1.4) 4 (1.9) (2)]
3

dx f f f f f f f
x

      
2

1

1 0.1[ (1) 4 (1.1) 2 (1.2) 4 (1.3) 2 (1.4) 4 (1.9) (2)]
3

dx f f f f f f f
x

      

Example 3

1
10


1

10
 0.1 0.1
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Example 3 – Solution

Recall that the trapezoidal rule with n = 10 yielded an 
approximation of 0.693771, with an error of 0.000624 from 
the value of ln 2  0.693147 to six decimal places.

Simpson’s rule yields an approximation with an error of 
0.000003 to six decimal places, a definite improvement over 
the trapezoidal rule.

cont’d

0.1 1 1 1 1 1 11 4 2 4 2 4
3 1.1 1.2 1.3 1.4 1.9 2
                                    

0.1 1 1 1 1 1 11 4 2 4 2 4
3 1.1 1.2 1.3 1.4 1.9 2
                                    

0.693150 0.693150
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Applied Example 4 – Cardiac Output

One method of measuring cardiac output is to inject 5 to     
10 mg of a dye into a vein leading to the heart.

After making its way through the lungs, the dye returns to the 
heart and is pumped into the aorta, where its concentration is 
measured at equal time intervals.
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The graph of c(t) shows the concentration of dye in a 
person’s aorta, measured in 2-second intervals after 5 mg of 
dye have been injected:
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Applied Example 4 – Cardiac Output
cont’d
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The person’s cardiac output, measured in liters per      
minute (L/min) is computed using the formula

where D is the quantity of dye injected.

Applied Example 4 – Cardiac Output
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
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cont’d
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Use Simpson’s rule with n = 14 to evaluate the integral and 
determine the person’s cardiac output.

Applied Example 4 – Cardiac Output
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cont’d
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We have a = 0, b = 28, n = 14, and t = 2, so that
t0 = 0, t1 = 2, t2 = 4, t3 = 6, … , t14 = 28.

Simpson’s rule yields

Applied Example 4 – Solution

28

0

2( ) [ (0) 4 (2) 2 (4) 4 (6) ... 4 (26) (28)]
3

c t dt c c c c c c      
28

0

2( ) [ (0) 4 (2) 2 (4) 4 (6) ... 4 (26) (28)]
3

c t dt c c c c c c      
2[0 4(0) 2(0.4) 4(2.0) 2(4.0)
3

4(4.4) 2(3.9) 4(3.2) 2(2.5) 4(1.8)
2(1.3) 4(0.8) 2(0.5) 4(0.2) 0.1]

    

    
    

  
  

2[0 4(0) 2(0.4) 4(2.0) 2(4.0)
3

4(4.4) 2(3.9) 4(3.2) 2(2.5) 4(1.8)
2(1.3) 4(0.8) 2(0.5) 4(0.2) 0.1]

    

    
    

  
  

49.9 49.9
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Therefore, the person’s cardiac output is

or approximately 6.0 L/min.

Applied Example 4 – Solution

28

0

60

( )



DR
c t dt

28

0

60

( )



DR
c t dt

cont’d

60(5)
49.9


60(5)
49.9



6.0 6.0


