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Improper Integrals
In many applications we are concerned with integrals that 
have unbounded intervals of integration.

These are called improper integrals.

We will now discuss problems that involve improper integrals.
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Improper Integral of f over [a, ) 

Let f be a continuous function on the unbounded 
interval [a, ). Then the improper integral of f over 
[a, ) is defined by

if the limit exists.
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Example 2
Evaluate if it converges.

Solution:

Since ln b → , as b →  the limit does not exist, and we 
conclude that the given improper integral is divergent.
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Example 3
Find the area of the region R under the curve  y = e–x/2

for x  0.

Solution:
The required area is shown in the diagram below:
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Example 3 – Solution
Taking b > 0, we compute the area of the region under the 
curve y = e–x/2 from x = 0 to x = b,

Then, the area of the region R is given by

or 2 square units.
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Improper Integral of f over (–, b] 

Let f be a continuous function on the unbounded 
interval (–, b]. Then the improper integral of f
over (–, b] is defined by

if the limit exists.
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Example 4
Find the area of the region R bounded above by the x-axis, 
below by y = –e2x, and on the right, by the line x = 1.

Solution:
The graph of region R is:
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Example 4 – Solution
Taking a < 1, compute 

Then, the area under the required region R is given by
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Improper Integral Unbounded on Both Sides

Improper Integral of f over (–, )
Let f be a continuous function over the unbounded 
interval (–, ). 

Let c be any real number and suppose both the 
improper integrals

are convergent.

Then, the improper integral of f over (–, ) is 
defined by
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Example 5
Evaluate the improper integral and give a
geometric interpretation of the result.

Solution:
Take the number c to be zero and evaluate first for the  
interval (–, 0):
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Example 5 – Solution
Now evaluate for the  interval (0, ):

Therefore, 
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Example 5 – Solution
Below is the graph of y = xe–x2, showing the regions of 
interest R1 and R2:
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Example 5 – Solution
Region R1 lies below the x-axis, so its area is negative 
(R1 = –½).

While the symmetrically identical region R2 lies above the 
x-axis, so its area is positive (R2 = ½).

Thus, adding the areas of the two regions yields zero:

cont’d
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