CALCULUS OF SEVERAL VARIABLES

Copyright © Cengage Learning. All rights reserved.
8.6

Total Differentials

Increments

Increments

Recall that if f is a function of one variable defined by $y=f(x)$, then the increment in y is defined to be

$$
\Delta y=f(x+\Delta x)-f(x)
$$

where Δx is an increment in x (Figure 30a).

(a) The increment Δy is the change in y as x changes from x to $x+\Delta x$.

Increments

The increment of a function of two or more variables is defined in an analogous manner.

For example, if z is a function of two variables defined by $z=f(x, y)$, then the increment in z is

$$
\begin{equation*}
\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y) \tag{12}
\end{equation*}
$$

where Δx and Δy are the increments in the independent variables x and y, respectively.

Increments

See Figure 30b.

(b) The increment Δz is the change in z as x changes from x to $x+\Delta x$ and y changes from y to $y+\Delta y$.

Figure 30

Example 1

Let $z=f(x+y)=2 x^{2}-x y$. Find Δz. Then use your result to find the change in z if (x, y) changes from $(1,1)$ to (0.98, 1.03).

Solution:
Using (12), we obtain

$$
\begin{aligned}
\Delta z & =f(x+\Delta x, y+\Delta y)-f(x, y) \\
& =\left[2(x+\Delta x)^{2}-(x+\Delta x)(y+\Delta y)\right]-\left(2 x^{2}-x y\right) \\
& =2 x^{2}+4 x \Delta x+2(\Delta x)^{2}-x y-x \Delta y-y \Delta x-\Delta x \Delta y-2 x^{2}+x y \\
& =(4 x-y) \Delta x-x \Delta y+2(\Delta x)^{2}-\Delta x \Delta y
\end{aligned}
$$

Example 1 - Solution

Next, to find the increment in z if (x, y) changes from $(1,1)$ to (0.98, 1.03), we note that

$$
\Delta x=0.98-1=-0.02 \text { and } \Delta y=1.03-1=0.03
$$

Therefore, using the result obtained earlier with $x=1, y=1$, $\Delta x=-0.02$, and $\Delta y=0.03$, we obtain

$$
\begin{aligned}
\Delta z=[(4(1)-1](-0.02) & -(1)(0.03)+2(-0.02)^{2} \\
& -(-0.02)(0.03)
\end{aligned}
$$

$=-0.0886$
You can verify the correctness of this result by calculating the quantity $f(0.98,1.03)-f(1,1)$.

The Total Differential

The Total Differential

Recall that if f is a function of one variable defined by $y=f(x)$, then the differential of f at x is defined by

$$
d y=f^{\prime}(x) d x
$$

where $d x=\Delta x$ is the differential in x.

Furthermore, we saw that

$$
\Delta y \approx d y
$$

if Δx is small (Figure 31a).

(a) Relationship between $d y$ and Δy

The Total Differential

The concept of the differential extends readily to a function of two or more variables.

Total Differential

Let $z=f(x, y)$ define a differentiable function of x and y.

1. The differentials of the independent variables x and y are $d x=\Delta x$ and $d y=\Delta y$.
2. The differential of the dependent variable z is

$$
\begin{equation*}
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \tag{11}
\end{equation*}
$$

The Total Differential

Thus, analogous to the one-variable case, the total differential of z is a linear function of $d x$ and $d y$.

Furthermore, it provides us with an approximation of the exact change in z,

$$
\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)
$$

corresponding to a net change Δx in x from x to $x+\Delta x$ and a net change Δy in y from y to $y+\Delta y$; that is,

$$
\begin{equation*}
\Delta z \approx d z=\frac{\partial f}{\partial x}(x, y) d x+\frac{\partial f}{\partial y}(x, y) d y \tag{14}
\end{equation*}
$$

provided $\Delta x=d x$ and $\Delta y=d y$ are sufficiently small.

The Total Differential

See figure 31b.

(b) Relationship between $d z$ and Δz. The tangent plane is the analog of tangent line T in the one-variable case.

Figure 31

Example 2

$$
\text { Let } z=2 x^{2} y+y^{3} .
$$

a. Find the differential $d z$ of z.
b. Find the approximate change in z when x changes from $x=1$ to $x=1.01$ and y changes from $y=2$ to $y=1.98$.
c. Find the actual change in z when x changes from $x=1$ to $x=1.01$ and y changes from $y=2$ to $y=1.98$. Compare the result with that obtained in part (b).

Example 2 - Solution

a. Let $f(x, y)=2 x^{2} y+y^{3}$.

Then the required differential is

$$
\begin{aligned}
d z & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \\
& =4 x y d x+\left(2 x^{2}+3 y^{2}\right) d y
\end{aligned}
$$

b. Here $x=1, y=2$, and $d x=1.01-1=0.01$ and $d y=1.98-2=-0.02$.

Therefore,

$$
\begin{aligned}
\Delta z \approx d z & =4(1)(2)(0.01)+[2(1)+3(4)](-0.02) \\
& =-0.20
\end{aligned}
$$

Example 2 - Solution

c. The actual change in z is given by

$$
\begin{aligned}
\Delta z & =f(1.01,1.98)-f(1,2) \\
& =\left[2(1.01)^{2}(1.98)+(1.98)^{3}\right]-\left[2(1)^{2}(2)+(2)^{3}\right] \\
& \approx 11.801988-12 \\
& \approx-0.1980
\end{aligned}
$$

We see that $\Delta z \approx d z$, as expected.

The Total Differential

If f is a function of the three variables x, y, and z, then the total differential of $w=f(x, y, z)$ is defined to be

$$
d w=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

where $d x=\Delta x, d y=\Delta y$, and $d z=\Delta z$ are the actual changes in the independent variables x, y, and z as x changes from $x=a$ to $x=a+\Delta x, y$ changes from $y=b$ to $y=b+\Delta y$, and z changes from $z=c$ to $z=c+\Delta z$, respectively.

