CALCULUS OF SEVERAL VARIABLES

Copyright © Cengage Learning. All rights reserved.
8.7 Double Integrals

A Geometric Interpretation of the Double Integral

You may recall that we can do a Riemann sum to approximate the area under the graph of a function of one variable by adding the areas of the rectangles that form below the graph resulting from small increments of $x(\Delta x)$ within a given interval $[a, b]$:

A Geometric Interpretation of the Double Integral

Similarly, it is possible to obtain an approximation of the volume of the solid under the graph of a function of two variables.

$\xrightarrow{d} y$

A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_{i} of parallelepipeds with base $R_{i}=\Delta x \times \Delta y$ and height $f\left(x_{i}, y_{i}\right)$:

A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_{i} of parallelepipeds with base $R_{i}=\Delta x \times \Delta y$ and height $f\left(x_{i}, y_{i}\right)$:

A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_{i} of parallelepipeds with base $R_{i}=\Delta x \times \Delta y$ and height $f\left(x_{i}, y_{i}\right)$:

A Geometric Interpretation of the Double Integral

The limit of the Riemann sum obtained when the number of rectangles m along the x-axis, and the number of subdivisions n along the y-axis tends to infinity is the value of the double integral of $f(x, y)$ over the region R and is denoted by $\int_{R} \int f(x, y) d A$

Theorem 1: Evaluating a Double Integral Over a Plane Region

a. Suppose $g_{1}(x)$ and $g_{2}(x)$ are continuous functions on [a, b] and the region R is defined by
$R=\left\{(x, y) \mid g_{1}(x) \leq y \leq g_{2}(x) ; a \leq x \leq b\right\}$.
Then,

$$
\int_{R} \int f(x, y) d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x
$$

Theorem 1: Evaluating a Double Integral Over a Plane Region

b. Suppose $h_{1}(y)$ and $h_{2}(y)$ are continuous functions on [$c, d]$ and the region R is defined by
$R=\left\{(x, y) \mid h_{1}(y) \leq x \leq h_{2}(y) ; c \leq y \leq d\right\}$.
Then,

$$
\int_{R} \int f(x, y) d A=\int_{c}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right] d y
$$

Example 2

Evaluate $\int_{R} \int f(x, y) d A$ given that $f(x, y)=x^{2}+y^{2}$ and R is the region bounded by the graphs of $g_{1}(x)=x$ and $g_{2}(x)=2 x$ for $0 \leq x \leq 2$.

Solution:

The region under consideration is:

Example 2 - Solution

Using Theorem 1, we find:

$$
\begin{aligned}
\int_{R} \int f(x, y) d A & =\int_{0}^{2}\left[\int_{x}^{2 x}\left(x^{2}+y^{2}\right) d y\right] d x \\
& =\int_{0}^{2}\left[\left.\left(x^{2} y+\frac{1}{3} y^{3}\right)\right|_{x} ^{2 x}\right] d x \\
& =\int_{0}^{2}\left[\left(2 x^{3}+\frac{8}{3} x^{3}\right)-\left(x^{3}+\frac{1}{3} x^{3}\right)\right] d x \\
& =\int_{0}^{2} \frac{10}{3} x^{3} d x=\left.\frac{5}{6} x^{4}\right|_{0} ^{2}=13 \frac{1}{3}
\end{aligned}
$$

Example 3

Evaluate $\int_{R} \int f(x, y) d A$, where $f(x, y)=x e^{y}$ and R is the plane region bounded by the graphs of $y=x^{2}$ and $y=x$.

Solution:
The region under consideration is:
The points of intersection of the two curves are found by solving the equation $x^{2}=x$, giving $x=0$ and $x=1$.

Example 3 - Solution

Using Theorem 1, we find:

$$
\begin{aligned}
\int_{R} \int f(x, y) d A & =\int_{0}^{1}\left[\int_{x^{2}}^{x} x e^{y} d y\right] d x=\int_{0}^{1}\left[\left.\left(x e^{y}\right)\right|_{x^{2}} ^{x}\right] d x \\
& =\int_{0}^{1}\left(x e^{x}-x e^{x^{2}}\right) d x=\int_{0}^{1} x e^{x} d x-\int_{0}^{1} x e^{x^{2}} d x \\
& =\left[(x-1) e^{x}-\frac{1}{2} e^{x^{2}}\right]_{0}^{1} \quad \begin{array}{l}
\text { Integrating by parts on } \\
\text { the right-hand side }
\end{array} \\
& =-\frac{1}{2} e-\left(-1-\frac{1}{2}\right)=\frac{1}{2}(3-e)
\end{aligned}
$$

The Volume of a Solid Under a Surface

Let R be a region in the $x y$-plane and let f be continuous and nonnegative on R.

Then, the volume of the solid under a surface bounded above by $z=f(x, y)$ and below by R is given by

$$
V=\int_{R} \int f(x, y) d A
$$

Example 4

Find the volume of the solid bounded above by the plane $z=f(x, y)=y$ and below by the plane region R defined by

$$
y=\sqrt{1-x^{2}} \quad(0 \leq x \leq 1)
$$

Solution:
The graph of the region R is:

Observe that $f(x, y)=y>0$ for (x, y) in R.

Example 4 - Solution

Therefore, the required volume is given by

$$
\begin{aligned}
V=\int_{R} \int y d A & =\int_{0}^{1}\left[\int_{0}^{\sqrt{1-x^{2}}} y d y\right] d x \\
& =\int_{0}^{1}\left[\left.\frac{1}{2} y^{2}\right|_{0} ^{\sqrt{1-x^{2}}}\right] d x \\
& =\int_{0}^{1} \frac{1}{2}\left(1-x^{2}\right) d x \\
& =\left.\frac{1}{2}\left(x-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{3}
\end{aligned}
$$

Example 4 - Solution

The graph of the solid in question is:

