CALCULUS OF SEVERAL VARIABLES

Copyright © Cengage Learning. All rights reserved.

8.8 Applications of Double Integrals

Finding the Volume of a Solid by Double Integrals

Finding the Volume of a Solid by Double Integrals

As we saw earlier, the double integral

$$
\iint_{R} f(x, y) d A
$$

gives the volume of the solid bounded by the graph of $f(x, y)$ over the region R.

The Volume of a Solid under a Surface
Let R be a region in the $x y$-plane and let f be continuous and nonnegative on R. Then, the volume of the solid under a surface bounded above by $z=f(x, y)$ and below by R is given by

$$
V=\int_{R} \int f(x, y) d A
$$

Example 1

Find the volume of the solid bounded above by the plane $z=f(x, y)=y$ and below by the plane region R defined by $y=\sqrt{1 ? x^{2}}(0 \leq x \leq 1)$.

Solution:
The region R is sketched in Figure 40.

Observe that $f(x, y)=y \geq 0$ for $(x, y) \in R$.

The plane region R defined by $y=\sqrt{1 ? x^{2}}(0 \leq x \leq 1)$

Example 1 - Solution

Therefore, the required volume is given by

$$
\begin{aligned}
\iint_{R} y d A & =\int_{0}^{1}\left[\int_{0}^{\sqrt{1 ? x^{2}}} y d y\right] d x=\int_{0}^{1}\left[\left.\frac{1}{2} y^{2}\right|_{0} ^{\sqrt{1 ? x^{2}}}\right] d x \\
& =\int_{0}^{1} \frac{1}{2}\left(1 ? x^{2} d x=\left.\frac{1}{2}\left(x ? \frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{3}\right.
\end{aligned}
$$

or $\frac{1}{3}$ cubic unit.

Example 1 - Solution

The solid is shown in Figure 41. Note that it is not necessary to make a sketch of the solid in order to compute its volume.

The solid bounded above by the plane $z=y$ and below by the plane region defined
by $y=\sqrt{1^{2}} \quad(0 \leq x \leq 1)$
Figure 41

Population of a City

Population of a City

Suppose the plane region R represents a certain district of a city and $f(x, y)$ gives the population density (the number of people per square mile) at any point (x, y) in R.

Enclose the set R by a rectangle and construct a grid for it in the usual manner.

In any rectangular region of the grid that has no point in common with R, set $f\left(x_{i}, y_{i}\right) h k=0$ (Figure 42).

The rectangular region R representing a certain district of a city is enclosed by a rectangular grid.

Population of a City

Then, corresponding to any grid covering the set R, the general term of the Riemann sum $f\left(x_{i}, y_{i}\right) h k$ (population density times area) gives the number of people living in that part of the city corresponding to the rectangular region R_{i}.

Therefore, the Riemann sum gives an approximation of the number of people living in the district represented by R and, in the limit, the double integral

$$
\iint_{R} f(x, y) d A
$$

gives the actual number of people living in the district under consideration.

Applied Example 2 - Population Density

The population density of a certain city is described by the function

$$
f(x, y)=10,000 e^{-0.2|x|-0.1|y|}
$$

where the origin $(0,0)$ gives the location of the city hall. What is the population inside the rectangular area described by

$$
R=\{(x, y) \mid-10 \leq x \leq 10 ;-5 \leq y \leq 5\}
$$

if x and y are in miles? (See Figure 43.)

The rectangular region R represents a certain district of a city.

Applied Example 2 - Solution

By symmetry, it suffices to compute the population in the first quadrant. (Why?) Then, upon observing that in this quadrant

$$
f(x, y)=10,000 e^{-0.2 x-0.1 y}=10,000 e^{-0.2 x} e^{-0.1 y}
$$

we see that the population in R is given by

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =4 \int_{0}^{10}\left[\int_{0}^{5} 10,000 e^{? .2 x} e^{? .1 y} d y\right] d x \\
& =4 \int_{0}^{10}\left[? 00,\left.000 e^{? .2 x} e^{? .1 y}\right|_{0} ^{5}\right] d x \\
& =400,000\left(1-e^{-0.5}\right) \int_{0}^{10} e^{-0.2 x} d x
\end{aligned}
$$

Applied Example 2 - Solution

$$
=2,000,000\left(1-e^{-0.5}\right)\left(1-e^{-2}\right)
$$

or approximately 680,438.

Average Value of a Function

Average Value of a Function

We know that the average value of a continuous function $f(x)$ over an interval $[a, b]$ is given by

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

That is, the average value of a function over $[a, b]$ is the integral of f over $[a, b]$ divided by the length of the interval. An analogous result holds for a function of two variables $f(x, y)$ over a plane region R.

To see this, we enclose R by a rectangle and construct a rectangular grid. Let (x_{i}, y_{i}) be any point in the rectangle R_{i} of area hk.

Average Value of a Function

Now, the average value of the $m n$ numbers $f\left(x_{1}, y_{1}\right)$, $f\left(x_{2}, y_{2}\right), \ldots, f\left(x_{m n}, y_{m n}\right)$ is given by

$$
\frac{f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)+\cdots+f\left(x_{m n}, y_{m n}\right)}{m n}
$$

which can also be written as

$$
\begin{aligned}
& \frac{h k}{h k}\left[\frac{f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)+\cdots+f\left(x_{m n}, y_{m n}\right)}{m n}\right] \\
& \quad=\frac{1}{(m n) h k}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)+\cdots+f\left(x_{m n}, y_{m n}\right)\right] h k
\end{aligned}
$$

Average Value of a Function

Now the area of R is approximated by the sum of the $m n$ rectangles (omitting those having no points in common with R), each of area $h k$.

Note that this is the denominator of the previous expression. Therefore, taking the limit as m and n both tend to infinity, we obtain the following formula for the average value of $f(x, y)$ over R.

Average Value of $f(x, y)$ over the Region R
If f is integrable over the plane region R, then its average value over R is given by

$$
\begin{equation*}
\frac{\int_{R} \int f(x, y) d A}{\text { Area of } R} \text { or } \frac{\int_{R} \int f(x, y) d A}{\int_{R} \int d A} \tag{18}
\end{equation*}
$$

Average Value of a Function

Note:

If we let $f(x, y)=1$ for all (x, y) in R, then

$$
\iint_{R} f(x, y) d A=\iint_{R} d A=\text { Area of } R
$$

Example 3

Find the average value of the function $f(x, y)=x y$ over the plane region defined by $y=e^{x}(0 \leq x \leq 1)$.

Solution:

The region R is shown in Figure 44.

The plane region R defined by $y=e^{x}(0 \leq x \leq 1)$

Example 3 - Solution

The area of the region R is given by

$$
\begin{aligned}
\int_{0}^{1}\left[\int_{0}^{e^{x}} d y\right] d x & =\int_{0}^{1}\left[\left.y\right|_{0} ^{e^{x}}\right] d x \\
& =\int_{0}^{1} e^{x} d x \\
& =\left.e^{x}\right|_{0} ^{1} \\
& =e-1
\end{aligned}
$$

We would obtain the same result had we viewed the area of this region as the area of the region under the curve $y=e^{x}$ from $x=0$ to $x=1$.

Example 3 - Solution

Next, we compute

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{0}^{1}\left[\int_{0}^{e^{x}} x y d y\right] d x \\
& =\int_{0}^{1}\left[\left.\frac{1}{2} x y^{2}\right|_{0} ^{e^{x}}\right] d x \\
& =\int_{0}^{1} \frac{1}{2} x e^{2 x} d x \\
& =\left.\frac{1}{4} x e^{2 x} ? \frac{1}{8} e^{2 x}\right|_{0} ^{1}
\end{aligned}
$$

Example 3 - Solution

$$
\begin{aligned}
& =\left(\frac{1}{4} e^{2} ? \frac{1}{8} e^{2}\right) \frac{1}{8} \\
& =\frac{1}{8}\left(e^{2}+1\right)
\end{aligned}
$$

Therefore, the required average value is given by

$$
\frac{\iint_{R} f(x, y) d A}{\iint_{R} d A}=\frac{\frac{1}{8}\left(e^{2}+1\right)}{e ?}=\frac{e^{2}+1}{8(e ?)}
$$

