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Models Involving Differential Equations

Recall that a differential equation is an equation that involves 
an unknown function and its derivative(s). Here are some 
examples of differential equations:

Differential equations appear in practically every branch of 
applied mathematics, and the study of these equations 
remains one of the most active areas of research in 
mathematics.

As you will see in the next few examples, models involving 
differential equations often arise from the mathematical 
formulation of practical problems.
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Models Involving Differential Equations

Unrestricted Growth Models
We have seen that the size of a population at any time t, 
Q(t), increases at a rate that is proportional to Q(t) itself.

Thus,

(1)

where k is a constant of proportionality. 

This is a differential equation involving the unknown function 
Q and its derivative Q .

= dQ kQ
dt
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Restricted Growth Models
In many applications the quantity Q(t) does not exhibit 
unrestricted growth but approaches some definite upper 
bound. 

The learning curves and logistic functions are examples of 
restricted growth models. 

Let’s derive the mathematical models that lead to these 
functions.
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Suppose Q(t) does not exceed some number C, called the 
carrying capacity of the environment. 

Furthermore, suppose the rate of growth of this quantity is 
proportional to the difference between its upper bound and 
its current size. 

The resulting differential equation is

(2)

where k is a constant of proportionality.

= ( ?dQ k C Q
dt

K(C-Q)
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Observe that if the initial population is small relative to C, 
then the rate of growth of Q is relatively large. But as Q(t) 
approaches C, the difference C – Q(t) approaches zero, as 
does the rate of growth of Q. 

The solution of the differential 
Equation (2) is a function that 
describes a learning curve 
(Figure 1).

Figure 1

Q(t) describes a learning curve.



9

Models Involving Differential Equations

Next, let’s consider a restricted growth model in which the 
rate of growth of a quantity Q(t ) is jointly proportional to its 
current size and the difference between its upper bound and 
its current size; that is,

(3)

where k is a constant of proportionality. 

Observe that when Q(t ) is small relative to C, the rate of 
growth of Q is approximately proportional to Q. But as Q(t) 
approaches C, the growth rate slows down to zero.

= ( ?dQ kQ C Q
dt

kQ(C-Q)
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If Q > C, then dQ/dt < 0 and the quantity is decreasing with 
time, with the decay rate slowing down as Q approaches C. 

The solution of the differential Equation (3) is just the logistic 
function. Its graph is shown in Figure 2.

Figure 2

Two solutions of the logistic equation
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Stimulus Response
In the quantitative theory of psychology, one model that 
describes the relationship between a stimulus S and the 
resulting response R is the Weber–Fechner law. 

This law asserts that the rate of change of a reaction R is 
inversely proportional to the stimulus S. Mathematically, this 
law may be expressed as

(4)

where k is a constant of proportionality.

= dR k
dS S
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Furthermore, suppose that the threshold level, the lowest 
level of stimulation at which sensation is detected, is S0. 
Then we have the condition R = 0 when S = S0; that is,         
R(S0) = 0. 

The graph of R versus S is shown in Figure 3.

Figure 3

The solution to the differential equation (4) 
describes the response to a stimulus.
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Mixture Problems
Our next example is a typical mixture problem. Suppose a 
tank initially contains 10 gallons of pure water. Brine 
containing 3 pounds of salt per gallon flows into the tank at a 
rate of 2 gallons per minute, and the well-stirred mixture 
flows out of the tank at the same rate. How much salt is in 
the tank at any given time?

Let’s formulate this problem mathematically. Suppose A(t) 
denotes the amount of salt in the tank at any time t. 
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Then the derivative dA/dt, the rate of change of the amount 
of salt at any time t, must satisfy the condition

= (Rate of salt flowing in) – (Rate of salt flowing out)

(Figure 4).

Figure 4

The rate of change of the amount of salt at time 
t = (Rate of salt flowing in) – (Rate of salt flowing out)

dA
dt
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But the rate at which salt flows into the tank is given by
(2 gal/min)(3 lb/gal)

or 6 pounds per minute.

Since the rate at which the solution leaves the tank is the 
same as the rate at which the brine is poured into it, the tank 
contains 10 gallons of the mixture at any time t.

Since the salt content at any time t is A pounds, the 
concentration of the salt in the mixture is (A/10) pounds per 
gallon.

(Rate of flow)  (Concentration)
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Therefore, the rate at which salt flows out of the tank is given 
by

(2 gal/min)

or A/5 pounds per minute. Therefore, we are led to the 
differential equation

(5)

An additional condition arises from the fact that initially there 
is no salt in the solution. This condition may be expressed 
mathematically as A = 0 when t = 0 or, more concisely,          
A(0) = 0.

lb/gal
10
A 

 
 

= 6 ?
5

dA A
dt
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Solutions of Differential Equations
Suppose we are given a differential equation involving the 
derivative(s) of a function y. Recall that a solution to a 
differential equation is any function f(x) that satisfies the 
differential equation. 

Thus, y = f(x) is a solution of the differential equation 
provided that the replacement of y and its derivative(s) by the 
function f(x) and its corresponding derivatives reduces the 
given differential equation to an identity for all values of x.
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Example 2
Show that any function of the form f(x) = ce–x + x – 1, where 
c is a constant, is a solution of the differential equation

y  + y = x

Solution:
Let

y = f(x) = ce–x + x – 1

so that
y  = f (x) = –ce–x + 1
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Example 2 – Solution
Substituting these equations into the left side of the given 
differential equation yields 

and we have verified the assertion.

cont’d

'

?? + 1 + + ?  = 
y y

x xce ce x x
 
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Solutions of Differential Equations
It can be shown that every solution of the differential 
equation y  + y = x must have the form y = ce–x + x – 1, 
where c is a constant; therefore, this is a general solution of 
the differential equation y  + y = x. 

Figure 5 shows a family of 
solutions of this differential 
equation for selected values 
of c.

Figure 5

Some solutions of y  + y = x
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Solutions of Differential Equations
Recall that the solution obtained by assigning a specific 
value to the constant c is called a particular solution of the 
differential equation. 

For example, the particular solution y = e–x + x – 1 is 
obtained from the general solution y = ce–x + x – 1 by taking 
c = 1. 

In practice, a particular solution of a differential equation is 
obtained from the general solution of the differential equation 
by requiring that the solution and/or its derivative(s) satisfy 
certain conditions at one or more values of x.


