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The Method of Separation of Variables

Differential equations are classified according to their basic 
form. A compelling reason for this categorization is that 
different methods are used to solve different types of 
equations.

The order of a differential equation is the order of the 
highest derivative of the unknown function appearing in the 
equation. 

A differential equation may be classified by its order. 
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The Method of Separation of Variables

For example, the differential equations

y  = xex and   y  + 2y = x2

are first-order equations, whereas the differential equation

is a second-order equation.
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The Method of Separation of Variables

In this section we describe a method for solving an important 
class of first-order differential equations: those that can be 
written in the form

= f(x)g(y)

where f(x) is a function of x only and g(y) is a function of y 
only. Such differential equations are said to be separable
because the variables can be separated. 

dy
dx
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The Method of Separation of Variables

Following is the first-order separable differential equation. 

It has the form dQ/dt = f(t)g(Q), where f(t) = k and 
g(Q) = Q(C – Q), and so it is separable. On the other hand, 
the differential equation

= xy2 + 2

is not separable.

dy
dx

dQ
dt

= kQ(C – Q)
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The Method of Separation of Variables

Separable first-order equations can be solved using the 
method of separation of variables.



Solving Separable Differential Equations



10

Example 1

Find the general solution of the first-order differential 
equation

y  = 

Solution:
Step 1:   Observe that the given differential equation has 

the form

= f(x)g(y)

where f(x) = x/(x2 + 1) and g(y) = y, and is    
therefore separable.

2 + 1
xy

x

2 = 
+ 1

dy x y
dx x

 
 
 
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Example 1 – Solution
Separating the variables, we obtain

Step 2:   Integrating each side of the last equation with 
respect to the appropriate variable, we have

or

ln |y | + C1 =    ln(x2 + 1) + C2

cont’d

1
2

2=  
 + 1

dy x dx
y x

 
 
 

2=  
 + 1

dy x dx
y x 
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Example 1 – Solution

ln |y | =    ln(x2 + 1) + C2 – C1

where C1 and C2 are arbitrary constants of integration. If we 
choose C such that C2 – C1 = ln |C |, then we have

ln |y | =    ln(x2 + 1) + ln |C |

= ln + ln |C |

= ln |C |

so the general solution is

1
2

1
2

cont’d

2 + 1x

2 + 1x ln A + ln B = ln AB

2=  + 1y x
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Solving Separable Differential Equations

An initial value problem consists of a differential equation 
with one or more side conditions specified at a point.



Justification of the Method of Separation of Variables
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Justification of the Method of Separation of Variables

To justify the method of separation of variables, let’s consider 
the separable Equation (6) in its general form:

f(x)g(y)

If g(y)  0, we may rewrite the equation in the form

=dy
dx

   1 ? = 0dy f x
g y dx
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Justification of the Method of Separation of Variables

Now, suppose that G is an antiderivative of 1/g and F is an 
antiderivative of f. Using the chain rule, we see that

Therefore,

and so

G(y) – F(x) = C

       ? = ?d dyG y F x G y F x
dx dx

   

   1= ?dy f x
g y dx

   ? = 0d G y F x
dx

  

C, a constant
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Justification of the Method of Separation of Variables

But the last equation is equivalent to

G(y) = F(x) + C    or

which is precisely the result of step 2 in the method of 
separation of variables.

    = dy f x dx
g y 


